1 General Derivative Rules

1. Constant Rule	$\frac{d}{dx}[c]=0$
2. Constant Multiple Rule	$\frac{d}{dx}\left[cf(x)\right] = cf'(x)$
3. Sum Rule	$\frac{d}{dx}\left[f(x)+g(x)\right]=f'(x)+g'(x)$
4. Difference Rule	$\frac{d}{dx}\left[f(x)-g(x)\right]=f'(x)-g'(x)$
5. Product Rule	$\frac{d}{dx}\left[f(x)g(x)\right] = f'(x)g(x) + f(x)g'(x)$
6. Quotient Rule	$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)f'(x) - f(x)g'(x)}{\left[g(x)\right]^2}$
7. Chain Rule	$\frac{d}{dx}\left[f(g(x))\right] = f'(g(x))g'(x)$

2 Derivative Rules for Particular Functions

	Basic Rule	Chain Rule Form
1. Powers	$\frac{d}{dx}\left[x^{n}\right]=nx^{n-1}$	$\frac{d}{dx}\left[\left(f(x)\right)^{n}\right] = n(f(x))^{n-1}f'(x)$
2. Sine	$\frac{d}{dx}\left[\sin x\right] = \cos x$	$\frac{d}{dx}\left[\sin\left(f(x)\right)\right] = \cos\left(f(x)\right)f'(x)$
3. Cosine	$\frac{d}{dx}\left[\cos x\right] = -\sin x$	$\frac{d}{dx}\left[\cos\left(f(x)\right)\right] = -\sin\left(f(x)\right)f'(x)$
4. Tangent	$\frac{d}{dx}\left[\tan x\right] = \sec^2 x$	$\frac{d}{dx}\left[\tan\left(f(x)\right)\right] = \sec^2\left(f(x)\right)f'(x)$
5. Secant	$\frac{d}{dx}\left[\sec x\right] = \sec x \tan x$	$\frac{d}{dx}\left[\sec\left(f(x)\right)\right] = \sec\left(f(x)\right)\tan\left(f(x)\right)f'(x)$
6. Cosecant	$\frac{d}{dx}\left[\csc x\right] = -\csc x \cot x$	$\frac{d}{dx}\left[\csc\left(f(x)\right)\right] = -\csc\left(f(x)\right)\cot\left(f(x)\right)f'(x)$
7. Cotangent	$\frac{d}{dx}\left[\cot x\right] = -\csc^2 x$	$\frac{d}{dx}\left[\cot\left(f(x)\right)\right] = -\csc^{2}\left(f(x)\right)f'(x)$
8. Exponential (base <i>e</i>)	$\frac{d}{dx}\left[e^{x}\right]=e^{x}$	$\frac{d}{dx}\left[e^{(f(x))}\right] = e^{(f(x))}f'(x)$
9. Exponential (base <i>a</i>)	$\frac{d}{dx}\left[a^{x}\right]=a^{x}\ln a$	$\frac{d}{dx}\left[a^{(f(x))}\right] = a^{(f(x))} \ln af'(x)$
10. Natural Logarithm	$\frac{d}{dx}\left[\ln x\right] = \frac{1}{x}$	$\frac{d}{dx}\left[\ln f(x)\right] = \frac{1}{f(x)}f'(x)$
11. Logarithm (base <i>a</i>)	$\frac{d}{dx}\left[\log_a x\right] = \frac{1}{x\ln a}$	$\frac{d}{dx}\left[\log_a f(x)\right] = \frac{1}{f(x)\ln a}f'(x)$
12. Inverse sine	$\frac{d}{dx}\left[\arcsin x\right] = \frac{1}{\sqrt{1-x^2}}$	$\frac{d}{dx}\left[\arcsin f(x)\right] = \frac{1}{\sqrt{1 - (f(x))^2}}f'(x)$
13. Inverse cosine	$\frac{d}{dx}\left[\arccos x\right] = \frac{-1}{\sqrt{1-x^2}}$	$\frac{d}{dx}\left[\arccos f(x)\right] = \frac{-1}{\sqrt{1 - (f(x))^2}} f'(x)$
14. Inverse tangent	$\frac{d}{dx}\left[\arctan x\right] = \frac{1}{1+x^2}$	$\frac{d}{dx}\left[\arctan f(x)\right] = \frac{1}{1 + (f(x))^2} f'(x)$