Question 1: Let $f(x)=e^{(2 \sqrt{x}+1)}$. Find a formula for $f^{-1}(x)$ (you may assume that the given function $f(x)$ is one-to-one.)

Question 2: Use logarithmic differentiation to find y^{\prime}. Express your answer as a function of x only:

$$
y=(\sin x)^{\ln x}
$$

Question 3:

(a) Determine the exact value of $\cos ^{-1}(\cos (5 \pi / 3))$
(b) Find the derivative of $y=\arctan (\sqrt{\sin (\theta)})$.
(c) Find an equation of the tangent line to $y=\sqrt{1-x^{2}} \arccos (x)$ at the point where $x=0$.

Question 4: Evaluate the following limits:
(a) $\lim _{x \rightarrow 2} \frac{\ln (2 x-3)}{x^{2}-4}$
(b) $\lim _{x \rightarrow 0} \frac{2-x^{2}-2 \cos (x)}{x^{4}}$
(c) $\lim _{x \rightarrow \infty}\left(e^{x}+1\right)^{1 / x}$

Question 5: For this question use $f(x)=\frac{1}{2} x^{2}-6 x+8 \ln (x)$
(a) Determine the intervals on which f is increasing or decreasing.
(b) Determine the local (or relative) maximum and minimum values of f.

Question 6: For this question use $f(x)=x-\sin (x)$ on the interval $[0,3 \pi]$
(a) Determine the intervals of concavity.
(b) Determine all inflection points.

