Question 1: Let $f(x) = e^{(2\sqrt{x}+1)}$. Find a formula for $f^{-1}(x)$ (you may assume that the given function f(x) is one-to-one.)

[5]

Question 2: Use logarithmic differentiation to find y'. Express your answer as a function of x only:

 $y = (\sin x)^{\ln x}$

[3]

[3]

Question 3:

(a) Determine the exact value of $\cos^{-1}(\cos{(5\pi/3)})$

(b) Find the derivative of $y = \arctan(\sqrt{\sin(\theta)})$.

(c) Find an equation of the tangent line to $y = \sqrt{1 - x^2} \arccos(x)$ at the point where x = 0.

Question 4: Evaluate the following limits:

(a)
$$\lim_{x\to 2} \frac{\ln(2x-3)}{x^2-4}$$

(b)
$$\lim_{x \to 0} \frac{2 - x^2 - 2\cos(x)}{x^4}$$

[3]

(c) $\lim_{x\to\infty} (e^x+1)^{1/x}$

[3]

[4]

Question 5: For this question use $f(x) = \frac{1}{2}x^2 - 6x + 8\ln(x)$

(a) Determine the intervals on which f is increasing or decreasing.

(b) Determine the local (or relative) maximum and minimum values of f.

[8]

Question 6: For this question use $f(x) = x - \sin(x)$ on the interval $[0, 3\pi]$

(a) Determine the intervals of concavity.

(b) Determine all inflection points.

[8]