Question 1: Find an equation of the tangent line to the curve

$$
x^{2}+y^{2}=\left(2 x^{2}+2 y^{2}-x\right)^{2}
$$

at the point $(0,1 / 2)$.

Question 2: Find $y^{\prime \prime}$ by implicit differentiation if

$$
x^{3}+y^{3}=1
$$

Express your answer as a single simplified fraction involving the variables x and y only.

Question 3: A balloon is released from ground level 4 m from the base of a 12 m tall lamppost. As the balloon rises vertically it casts a shadow on the ground as a result of the light atop the lamppost. When the balloon is 3 m above the ground it is rising at $1 \mathrm{~m} / \mathrm{s}$. At what rate is the shadow moving along the ground at that same instant?

Question 4: Use a linear approximation to approximate $\sqrt{26}$.

Question 5: The circumference of a sphere was measured to be 100 cm with a possible measurement error of $1 / 2 \mathrm{~cm}$. Estimate the maximum error in the calculated surface area.
(Note: the surface area of a sphere of radius r is $S=4 \pi r^{2}$.)

Question 6:
(a) Find the domain of $f(x)=\frac{x}{1-e^{x-2}}$
(b) Find the limit: $\lim _{x \rightarrow 3^{-}} e^{5 /(3-x)}$
(c) Express as a single simplified logarithm:

$$
\frac{1}{3} \ln (x+2)^{3}+\frac{1}{2}\left[\ln x-\ln \left(x^{2}+3 x+2\right)^{2}\right]
$$

Question 7: Find the following derivatives (it is not necessary to simplify your answers):
(a) $y=\sqrt{1+2 e^{3 x}}$
(b) $f(x)=10^{1-x^{2}}$
(c) $y=x^{2} \ln (2 x+1)$
(d) $g(t)=\left[\ln \left(1+e^{3 t}\right)\right]^{2}$

