Question 1: Let

$$
g(x)= \begin{cases}x^{4}-c x^{2} & \text { if } x<2 \\ c^{2} x+18 & \text { if } x \geq 2\end{cases}
$$

Find the constant c that makes g continuous at all real numbers.

Question 2: Use the Intermediate Value Theorem to show that the equation $\sqrt{\frac{x}{\pi}}=\cos \left(\frac{x}{2}\right)$ has a solution on the interval $[0, \pi]$.

Question 3: Evaluate the following limits, if they exist. If a limit does not exist because it is $+\infty$ or $-\infty$, state which with an explanation of your reasoning. (Do not use L'Hospital's rule to evaluate limits.)
(a) $\lim _{x \rightarrow \infty} \frac{x^{2}}{\sqrt{x^{4}+1}}$
(b) $\lim _{x \rightarrow \pi} \frac{\sin x}{(x-\pi)^{2}}$
(c) $\lim _{x \rightarrow \infty} \sqrt{9 x^{2}+1}-3 x$

Question 4:
(a) Use the limit definition of the derivative to find $f^{\prime}(x)$ if $f(x)=\frac{1}{1+x^{2}}$. Neatly show all steps and use proper notation. (No credit will be given if $f^{\prime}(x)$ is found using derivative rules.)
(b) Now check your work in part (a) by finding $\frac{d}{d x}\left[\frac{1}{1+x^{2}}\right]$ using derivative rules.

Question 5: A ball with an initial velocity of $5 \mathrm{~m} / \mathrm{s}$ rolls down a hill. The position of the ball after t seconds is $s(t)=5 t+3 t^{2}$ metres. How long does it take the velocity to reach $35 \mathrm{~m} / \mathrm{s}$?

Question 6: Determine $q^{\prime \prime}(0)$ if $q(t)=\sec (t)$

Question 7: Find an equation of the tangent line to $y=\sqrt{1+4 \sin (x)}$ at the point where $x=0$.

Question 8: Find the following derivatives (it is not necessary to simplify your answers):
(a) $y=\frac{1+\sin (x)}{x^{2}}$
(b) $f(x)=\left(\sqrt{x}+\frac{3}{x}\right) \tan (x)$
(c) $y=\frac{x}{\sqrt{7-3 x}}$
(d) $g(t)=\sin \left(\cos \left(\tan \left(t^{3}\right)\right)\right)$

