Question 1 [10]: Determine the derivatives of the following functions. It is not necessary to simplify your final answers.

(a) $y = \ln(\sec x)$

(b) $f(x) = \sin^{-1}(e^x)$

[3]

[3]

(c) $y = 10^{\arctan(\pi x)}$

(d) $g(x) = \ln(e^{-x} + xe^{-x})$

[4]

Question 2 [10]:

(a) Solve for x: $\ln(x+1) + \ln(x-1) = 1$

(b) Find the exact value of $\tan(\arcsin(-1/2))$.

Question 3: Use logarithmic differentiation to find y' where $y = \frac{\sqrt{x+1} (x+5)^3}{(x+3)^5}$.

Question 4: Determine the following limits:

(a)
$$\lim_{x\to 0} \frac{\sin(5x)}{\tan(3x)}$$

(b) $\lim_{x \to 0^+} \sqrt{x} \ln(x)$

(c) $\lim_{x \to 1^+} x^{1/(1-x)}$

[3]

[3]

Question 5: Determine the absolute minimum and maximum values of $f(x) = x^2 e^{-x}$ on the interval [-1, 3]. (Note: it may be useful to know that e^2 is approximately 7, and that e^3 is approximately 20.) **Question 6:** For this question use $f(x) = \frac{x}{x^2 + 1}$

(a) Determine the intervals on which f is increasing or decreasing

(b) Determine the local (or relative) maximum and minimum values of f.

[8]