Question 1 [10]: Evaluate the following limits if they exist. If a limit does not exist because it is $+\infty$ or $-\infty$, state which with an explanation of your reasoning.

(a)
$$\lim_{x\to 4} \frac{x^2 - 5x + 4}{x^2 - 3x - 4}$$

(b)
$$\lim_{x \to 16} \frac{4 - \sqrt{x}}{x - 16}$$

[3]

[3]

 $\lim_{x\to 0}\frac{x}{\sin\left(x\right)+\tan\left(x\right)}$ (c)

Question 2: Determine $\lim_{x\to 0} x^3 \cos\left(\frac{x+1}{x}\right)$. The Squeeze Theorem may be helpful here. If using the theorem be sure to demonstrate that all requirements of the theorem are satisfied.

Question 3: Let

$$g(x) = \begin{cases} x^4 - cx^2 & \text{if } x < 2\\ c^2x + 18 & \text{if } x \ge 2 \end{cases}$$

Find the constant c that makes g continuous at all real numbers.

[5]

Question 4 [10]: Evaluate the following limits if they exist. If a limit does not exist because it is $+\infty$ or $-\infty$, state which with an explanation of your reasoning.

(a) $\lim_{x\to\infty}(\sqrt{x}-x)$

(h)	$\lim_{x \to 12} \frac{2x + 12}{2x + 12}$	
(0)	$x \rightarrow -6^{-} x + 6 $	

[5]

Question 5 [10]:

(a) Use the limit definition of the derivative to find f'(x) if $f(x) = \frac{x}{x+1}$. Neatly show all steps and use proper notation. (No credit will be given if f'(x) is found using derivative rules.)

[8] (b) Give a one sentence statement describing the relationship between f'(2) and the graph of $y = \frac{x}{x+1}$. **Question 6:** Find an equation of the tangent line to $y = 3x^2 - x^3$ at the point where x = 1.

[4]

Question 7: Find y' if $y = \frac{\sin(x)}{2} - \frac{2}{\sqrt{x}}$

[3]

Question 8: Suppose a particle moves along a straight line according to the position function

$$s(t) = t^3 - 12t^2 + 15t + 10$$

When, if ever, is the particle's acceleration zero?