Question 1 [10]: Determine the derivatives of the following functions. It is not necessary to simplify your final answers.

(a)
$$y = \ln(\sec x)$$

[3]

(b)
$$f(x) = \sin^{-1}(e^x)$$

[3]

(c)
$$y = 10^{\arctan{(\pi x)}}$$

[4]

(d)
$$g(x) = \ln(e^{-x} + xe^{-x})$$

[4]

Question 2 [10]:

(a) Solve for x: $\ln(x+1) + \ln(x-1) = 1$

[3]

(b) Find the exact value of tan(arcsin(-1/2)).

[3]

Question 3: Use logarithmic differentiation to find y' where $y = \frac{\sqrt{x+1}(x+5)^3}{(x+3)^5}$.

Question 4: Determine the following limits:

(a)
$$\lim_{x \to 0} \frac{\sin(5x)}{\tan(3x)}$$

[3]

(b)
$$\lim_{x \to 0^+} \sqrt{x} \ln(x)$$

[3]

(c)
$$\lim_{x \to 1^+} x^{1/(1-x)}$$

[4]

Math 121 - Test 4 Nov 25 2015

Question 5: Determine the absolute minimum and maximum values of $f(x) = x^2 e^{-x}$ on the interval [-1,3]. (Note: it may be useful to know that e^2 is approximately 7, and that e^3 is approximately 20.)

Question 6: For this question use $f(x) = \frac{x}{x^2 + 1}$

(a) Determine the intervals on which f is increasing or decreasing

[8]

(b) Determine the local (or relative) maximum and minimum values of f.