- 1. Compute the following integrals. In some cases you must find a suitable parametrization for the given contour:
 - (a) $\int_{\gamma} (\operatorname{Im}(z))^2 dz$ where γ is parametrized by $z(t) = 3t + 2it, -2 \le t \le 2$.
 - (b) $\int_{\gamma} \frac{z+1}{\overline{z}} dz$ where γ is the right half of the unit circle from -i to i.
 - (c) $\int_{\gamma} |z|^2 dz$ where γ is $z(t) = t^2 + \frac{i}{t}$, $1 \le t \le 2$.
 - (d) $\int_{\gamma} e^{\overline{z}} dz$ where γ consists of the line segment from z = 0 to z = 2 followed by the line segment from z = 2 to $z = 1 + \pi i$.
 - (e) $\int_{\gamma} \operatorname{Re}(z) dz$ where γ is the circle of radius 2 with positive orientation.
- 2. Compute the following integrals. Explain your reasoning, especially if relying on the path independence theorem.
 - (a) $\int_{\gamma} 2z \, dz$ where γ is parametrized by $z(t) = 2\cos^3(\pi t) i\sin^2(\pi t/4), 0 \le t \le 2$.
 - (b) $\int_{\gamma} \frac{1}{z} dz$ where γ is the right half of the unit circle from -i to i.
 - (c) $\int_{\gamma} \frac{1}{z} dz$ where γ is the left half of the unit circle from -i to i.
 - (d) $\int_{\gamma} z \sin(z^2) dz$ where γ is the spiral $z(t) = t e^{it}$, $0 \le t \le 8\pi$.
 - (e) $\int_{\gamma} \text{Log}(z) dz$ where γ is the unit circle . (Harder: be careful with the branch cut.)