Math 370 - Introductory Complex Variables

G.Pugh

Nov 13 2014

Recap of Last Day

► **Theorem:** If *f* is analytic inside and on the simple closed positively oriented contour Γ and *z* is inside Γ then

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

• Consequently: If f is analytic inside and on Γ , then f'(z), f'''(z), f'''(z), . . . all exist for z inside Γ .

Liouville's Theorem

Theorem: A bounded entire function is a constant.

Proof: Suppose that f is entire and that $|f(z)| \leq M$ for every $z \in \mathbb{C}$. Let $z \in \mathbb{C}$ and let C_R be any circle of radius R, centre z. Then

$$f'(z) = \frac{1}{2\pi i} \int_{C_R} \frac{f(\zeta)}{(\zeta - z)^2} \, d\zeta$$

On C_R , $\left|\frac{f(\zeta)}{(\zeta-z)^2}\right| \leq \frac{M}{R^2}$, and the length of C_R is $2\pi R$. Therefore $|f'(z)| \leq \frac{1}{2\pi} \left(\frac{M}{R^2}\right) (2\pi R) = \frac{M}{R}$

This is true for every R > 0; now let $R \to \infty$ to find f'(z) = 0 for every $z \in \mathbb{C}$.

5.1 - Sequences and Series

Series: Basic Idea

- We know from real variable theory that many functions can be expressed as infinite series.
- For example,

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$= \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

To what extent does this theory extend to complex variables? Many of the definitions and theorems are similar...

Definitions

Definition: A series is a sum

$$c_0+c_1+c_2+\cdots=\sum_{k=0}^\infty c_k \,\, ext{ where the terms } c_k\in\mathbb{C}$$

- ► The n^{th} partial sum is $S_n = \sum_{k=0}^n c_k$.
- If $\lim_{n\to\infty}S_n$ exists and equals S (say), we say that $\sum_{k=0}c_k$ converges to S and we write $S=\sum_{k=0}^\infty c_k$
- ▶ If $\lim_{n\to\infty} S_n$ does not exist say the series diverges.

An Important Series

Theorem: Suppose
$$|z| < 1$$
. Then $\sum_{k=0}^{\infty} z^k = \frac{1}{1-z}$

Proof:

$$S_n = 1 + z + z^2 + \dots + z^{n-1} + z^n$$

 $zS_n = z + z^2 + \dots + z^{n-1} + z^n + z^{n+1}$

$$S_n - zS_n = 1 - z^{n+1}$$

 $S_n(1-z) = 1 - z^{n+1}$
 $S_n = \frac{1-z^{n+1}}{1-z}$

continued...

An Important Series, continued

Now let $n \to \infty$, so that $|z^{n+1}| \to 0$ since |z| < 1, leaving

$$\lim_{n\to\infty} S_n = \sum_{k=0}^{\infty} z^k = \frac{1}{1-z}$$

Convergence Tests

Many convergence results for series of real terms extend to those with complex terms and the proofs are similar.

▶ The Comparison Test: Suppose $|c_k| \le M_k$ for all $k \ge K$ (that is, eventually all of the c_k terms have modulus bounded by real numbers M_k .)

Then if
$$\sum_{k=0}^{\infty} M_k$$
 converges so does $\sum_{k=0}^{\infty} c_k$.

continued...

Convergence Tests, continued

▶ The Ratio Test: Suppose the series $\sum_{k=0}^{\infty} c_k$ is such that

$$\lim_{k o \infty} \left| rac{c_{k+1}}{c_k}
ight| = L.$$
 Then

- (i) If L < 1 the series converges
- (ii) If L > 1 the series diverges
- (iii) If L = 1 the test is inconclusive

Convergence Examples

Example: Determine the sum
$$\sum_{k=0}^{\infty} \frac{3}{(1+i)^k}$$

Convergence Examples

Example: Determine whether $\sum_{k=0}^{\infty} \frac{k^2}{3^k}$ converges or diverges.

Convergence Examples

Example: Determine the largest open disk *D* on which $\sum_{k=0}^{\infty} \frac{(z-i)^k}{2^k}$ converges.

Absolute Convergence

▶ **Definition:** The series $\sum_{k=0}^{\infty} c_k$ is called absolutely convergent if $\sum_{k=0}^{\infty} |c_k|$ converges.

▶ By the comparison test, taking $M_k = |c_k|$,

$$\sum_{k=0}^{\infty} |c_k|$$
 convergent $\Longrightarrow \sum_{k=0}^{\infty} c_k$ convergent

That is, absolute convergence implies convergence.

Pointwise Convergence

▶ Consider a function $F_n(z)$ defined on a set T, where $F_n(z)$ depends on both a non-negative integer n and $z \in \mathbb{C}$.

For example:
$$F_n(z) = \sum_{k=0}^n z^k = \frac{1-z^{n+1}}{1-z}$$
, and T is the disk $|z| < 1$.

- ▶ If for any $z \in \mathbb{C}$, $\lim_{n \to \infty} F_n(z)$ exists and equal F(z), we say that F_n converges pointwise to F.
- ▶ **Definition:** F_n converges pointwise to F on T if for each $z \in T$, given $\epsilon > 0$ there is a natural number N (possibly depending on both ϵ and z) such that if n > N then $|F_n(z) F(z)| < \epsilon$.

Pointwise Convergence, Continued

For $F_n(z) = \sum_{k=0}^n z^k = \frac{1-z^{n+1}}{1-z}$, we saw $F(z) = \frac{1}{1-z}$, and again T is the disk |z| < 1.

Notice: $|F_n(z) - F(z)| = \left| \frac{z^{n+1}}{1-z} \right|$ depends on both n and z. In order to make this difference small, n must be chosen with reference to the particular z being considered.

▶ Here $F_n(z) \rightarrow F(z)$ pointwise on T

Uniform Convergence

Again consider a function $F_n(z)$ defined on a set T, where $F_n(z)$ depends on both a non-negative integer n and $z \in \mathbb{C}$.

▶ **Definition:** F_n converges uniformly to F on T if given $\epsilon > 0$ there is a natural number N (possibly depending on ϵ but not on any particular z) such that if n > N then for any $z \in T$, $|F_n(z) - F(z)| < \epsilon$.

▶ Roughly speaking, if $F_n \to F$ uniformly, for n large enough the difference $|F_n(z) - F(z)|$ will be small for every $z \in T$.

Uniform Convergence, Continued

Again consider
$$F_n(z) = \sum_{k=0}^n z^k = \frac{1-z^{n+1}}{1-z}$$
 and $F(z) = \frac{1}{1-z}$, but this time let T be the disk $|z| < 1/2$.

Again

$$|F_n(z) - F(z)| = \left| \frac{z^{n+1}}{1-z} \right| < \frac{(1/2)^{n+1}}{(1/2)} = \frac{1}{2^n}$$

Notice: $|F_n(z) - F(z)|$ is bounded by an expression which is independent of z and which goes to zero as $n \to \infty$: $F_n \to F$ uniformly on T.

5.2 - Taylor Series

Taylor Series Definition

Definition: Suppose f is analytic at z_0 . Then

$$\sum_{j=0}^{\infty} \frac{f^{(j)}(z_0)}{j!} (z - z_0)^j$$

is called the Taylor Series for f around z_0 .

► If z₀ = 0 the series above is instead called a Maclaurin Series

Taylor Series Example

Example: Construct the Maclaurin series for $f(z) = e^z$

Solution: $f(0) = f'(0) = f''(0) = f'''(0) = \cdots = e^0 = 1$, so the Maclaurin series is

$$\sum_{j=0}^{\infty} \frac{f^{(j)}(0)}{j!} z^j = \sum_{j=0}^{\infty} \frac{1}{j!} z^j = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots$$

The Main Result

- Under what conditions is a function equal to its Taylor series?
- ▶ **Theorem:** If f is analytic in a disk $D = \{|z z_0| < R\}$, then

$$f(z) = \sum_{j=0}^{\infty} \frac{f^{(j)}(z_0)}{j!} (z - z_0)^j$$

for every z in D.

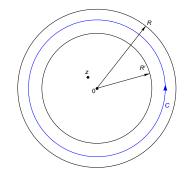
Furthermore, the series converges uniformly in any subdisk $D' = \{|z - z_0| \le R' < R\}$.

Consequently, the Taylor series will converge to f(z) everywhere inside the largest disk centred at z_0 over which f(z) is analytic.

Proof in the case $z_0 = 0$

Let C have radius (R' + R)/2. For any z in D',

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} d\zeta$$
, where



$$= \frac{1}{2\pi i} \int_C f(\zeta) \left[\frac{1}{\zeta} \cdot \frac{1}{1 - z/\zeta} \right] d\zeta \quad \} \quad \text{notice } |z/\zeta| < 1$$

notice
$$|z/\zeta| < 1$$

$$= \frac{1}{2\pi i} \int_C f(\zeta) \left[\frac{1}{\zeta} \cdot \left(\sum_{j=0}^n (z/\zeta)^j + \frac{(z/\zeta)^{n+1}}{1 - z/\zeta} \right) \right] d\zeta$$

Proof in the case $z_0 = 0$, continued

Splitting this last expression:

$$\sum_{i=0}^{n} \frac{z^{j}}{j!} \left(\frac{j!}{2\pi i} \int_{C} \frac{f(\zeta)}{\zeta^{j+1}} d\zeta \right) + \frac{1}{2\pi i} \int_{C} \frac{f(\zeta)}{\zeta - z} \cdot \left(\frac{z}{\zeta} \right)^{n+1} d\zeta$$

$$= \sum_{j=0}^{n} \frac{f^{(j)}(0)}{j!} z^{j} + \frac{1}{2\pi i} \int_{C} \frac{f(\zeta)}{\zeta - z} \cdot \left(\frac{z}{\zeta}\right)^{n+1} d\zeta$$

Notice: as $n \to \infty$ the first sum becomes the desired Taylor series.

It remains to show that

$$\lim_{n\to\infty}\frac{1}{2\pi i}\int_C\frac{f(\zeta)}{\zeta-z}\cdot\left(\frac{z}{\zeta}\right)^{n+1}d\zeta=0$$

Proof in the case $z_0 = 0$, continued

$$\frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} \cdot \left(\frac{z}{\zeta}\right)^{n+1} d\zeta$$

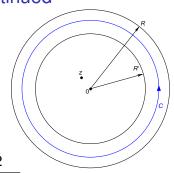
On C,

$$\left|\frac{1}{\zeta - z}\right| \le \frac{1}{\left(\frac{R + R'}{2} - R'\right)} = \frac{2}{R - R'}$$

and

$$\left| \frac{z}{\zeta} \right|^{n+1} = \frac{|z|^{n+1}}{|\zeta|^{n+1}} \le \left[\frac{R'}{(\frac{R'+R}{2})} \right]^{n+1} = \left(\frac{2R'}{R'+R} \right)^{n+1} = \alpha^{n+1}$$

where α < 1



Proof in the case $z_0 = 0$, continued

Using these bounds we have

$$\left| \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} \cdot \left(\frac{z}{\zeta} \right)^{n+1} d\zeta \right|$$

$$\leq \frac{1}{2\pi} \max_{\zeta \in C} |f(\zeta)| \left(\frac{2}{R - R'}\right) \alpha^{n+1}$$

$$\rightarrow$$
 0 as $n \rightarrow \infty$