
Math 370 - Introductory Complex Variables

G.Pugh

Nov 13 2014

1 / 26



Recap of Last Day

I Theorem: If f is analytic inside and on the simple closed
positively oriented contour Γ and z is inside Γ then

f (n)(z) =
n!

2πi

∫
Γ

f (ζ)

(ζ − z)n+1 dζ

I Consequently: If f is analytic inside and on Γ, then f ′(z),
f ′′(z), f ′′′(z), . . . all exist for z inside Γ.
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Liouville’s Theorem

Theorem: A bounded entire function is a constant.

Proof: Suppose that f is entire and that |f (z)| ≤ M for every
z ∈ C. Let z ∈ C and let CR be any circle of radius R, centre z.
Then

f ′(z) =
1

2πi

∫
CR

f (ζ)

(ζ − z)2 dζ

On CR,
∣∣∣∣ f (ζ)

(ζ − z)2

∣∣∣∣ ≤ M
R2 , and the length of CR is 2πR.Therefore

|f ′(z)| ≤ 1
2π

(
M
R2

)
(2πR) =

M
R

This is true for every R > 0; now let R →∞ to find f ′(z) = 0 for
every z ∈ C.
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5.1 - Sequences and Series
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Series: Basic Idea

I We know from real variable theory that many functions can
be expressed as infinite series.

I For example,

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·

=
∞∑

k=0

xk

k !

I To what extent does this theory extend to complex
variables? Many of the definitions and theorems are
similar. . .
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Definitions

I Definition: A series is a sum

c0 + c1 + c2 + · · · =
∞∑

k=0

ck where the terms ck ∈ C

I The nth partial sum is Sn =
n∑

k=0

ck .

I If lim
n→∞

Sn exists and equals S (say), we say that
n∑

k=0

ck

converges to S and we write S =
∞∑

k=0

ck

I If lim
n→∞

Sn does not exist say the series diverges.
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An Important Series
Theorem: Suppose |z| < 1. Then

∞∑
k=0

zk =
1

1− z

Proof:

Sn = 1 + z + z2 + · · ·+ zn−1 + zn

zSn = z + z2 + · · ·+ zn−1 + zn + zn+1

Sn − zSn = 1− zn+1

Sn(1− z) = 1− zn+1

Sn =
1− zn+1

1− z

continued. . .
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An Important Series, continued

Now let n→∞, so that |zn+1| → 0 since |z| < 1, leaving

lim
n→∞

Sn =
∞∑

k=0

zk =
1

1− z
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Convergence Tests

I Many convergence results for series of real terms extend
to those with complex terms and the proofs are similar.

I The Comparison Test: Suppose |ck | ≤ Mk for all k ≥ K
(that is, eventually all of the ck terms have modulus
bounded by real numbers Mk .)

Then if
∞∑

k=0

Mk converges so does
∞∑

k=0

ck .

continued. . .
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Convergence Tests, continued

I The Ratio Test: Suppose the series
∞∑

k=0

ck is such that

lim
k→∞

∣∣∣∣ck+1

ck

∣∣∣∣ = L. Then

(i) If L < 1 the series converges

(ii) If L > 1 the series diverges

(iii) If L = 1 the test is inconclusive
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Convergence Examples

Example: Determine the sum
∞∑

k=0

3
(1 + i)k
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Convergence Examples

Example: Determine whether
∞∑

k=0

k2

3k converges or diverges.
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Convergence Examples

Example: Determine the largest open disk D on which
∞∑

k=0

(z − i)k

2k converges.
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Absolute Convergence

I Definition: The series
∞∑

k=0

ck is called absolutely

convergent if
∞∑

k=0

|ck | converges.

I By the comparison test, taking Mk = |ck |,

∞∑
k=0

|ck | convergent =⇒
∞∑

k=0

ck convergent

That is, absolute convergence implies convergence.
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Pointwise Convergence

I Consider a function Fn(z) defined on a set T , where Fn(z)
depends on both a non-negative integer n and z ∈ C.

For example: Fn(z) =
n∑

k=0

zk =
1− zn+1

1− z
, and T is the disk

|z| < 1.

I If for any z ∈ C, lim
n→∞

Fn(z) exists and equal F (z), we say
that Fn converges pointwise to F .

I Definition: Fn converges pointwise to F on T if for each
z ∈ T , given ε > 0 there is a natural number N (possibly
depending on both ε and z) such that if n > N then
|Fn(z)− F (z)| < ε.
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Pointwise Convergence, Continued

I For Fn(z) =
n∑

k=0

zk =
1− zn+1

1− z
, we saw F (z) =

1
1− z

, and

again T is the disk |z| < 1.

I Notice: |Fn(z)− F (z)| =

∣∣∣∣ zn+1

1− z

∣∣∣∣ depends on both n and z.

In order to make this difference small, n must be chosen
with reference to the particular z being considered.

I Here Fn(z)→ F (z) pointwise on T
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Uniform Convergence

I Again consider a function Fn(z) defined on a set T , where
Fn(z) depends on both a non-negative integer n and z ∈ C.

I Definition: Fn converges uniformly to F on T if given ε > 0
there is a natural number N (possibly depending on ε but
not on any particular z) such that if n > N then for any
z ∈ T , |Fn(z)− F (z)| < ε.

I Roughly speaking, if Fn → F uniformly, for n large enough
the difference |Fn(z)− F (z)| will be small for every z ∈ T .
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Uniform Convergence, Continued

I Again consider Fn(z) =
n∑

k=0

zk =
1− zn+1

1− z
and

F (z) =
1

1− z
, but this time let T be the disk |z| < 1/2.

I Again

|Fn(z)− F (z)| =

∣∣∣∣ zn+1

1− z

∣∣∣∣ < (1/2)n+1

(1/2)
=

1
2n

I Notice: |Fn(z)− F (z)| is bounded by an expression which
is independent of z and which goes to zero as n→∞:
Fn → F uniformly on T .
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5.2 - Taylor Series
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Taylor Series Definition

I Definition: Suppose f is analytic at z0. Then

∞∑
j=0

f (j)(z0)

j!
(z − z0)j

is called the Taylor Series for f around z0.

I If z0 = 0 the series above is instead called a Maclaurin
Series
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Taylor Series Example

Example: Construct the Maclaurin series for f (z) = ez

Solution: f (0) = f ′(0) = f ′′(0) = f ′′′(0) = · · · = e0 = 1, so the
Maclaurin series is

∞∑
j=0

f (j)(0)

j!
z j =

∞∑
j=0

1
j!

z j = 1 + z +
z2

2!
+

z3

3!
+ · · ·
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The Main Result

I Under what conditions is a function equal to its Taylor
series?

I Theorem: If f is analytic in a disk D = {|z − z0| < R}, then

f (z) =
∞∑

j=0

f (j)(z0)

j!
(z − z0)j

for every z in D.

Furthermore, the series converges uniformly in any
subdisk D′ = {|z − z0| ≤ R′ < R} .

I Consequently, the Taylor series will converge to f (z)
everywhere inside the largest disk centred at z0 over which
f (z) is analytic.
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Proof in the case z0 = 0

Let C have radius (R′ + R)/2.
For any z in D′,

f (z) =
1

2πi

∫
C

f (ζ)

ζ − z
dζ, where

0

z
R′

C

R

=
1

2πi

∫
C

f (ζ)

[
1
ζ
· 1

1− z/ζ

]
dζ } notice |z/ζ| < 1

=
1

2πi

∫
C

f (ζ)

1
ζ
·

 n∑
j=0

(z/ζ)j +
(z/ζ)n+1

1− z/ζ

 dζ
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Proof in the case z0 = 0, continued
Splitting this last expression:

n∑
j=0

z j

j!

(
j!

2πi

∫
C

f (ζ)

ζ j+1 dζ
)

+
1

2πi

∫
C

f (ζ)

ζ − z
·
(

z
ζ

)n+1

dζ

=
n∑

j=0

f (j)(0)

j!
z j +

1
2πi

∫
C

f (ζ)

ζ − z
·
(

z
ζ

)n+1

dζ

Notice: as n→∞ the first sum becomes the desired Taylor
series.
It remains to show that

lim
n→∞

1
2πi

∫
C

f (ζ)

ζ − z
·
(

z
ζ

)n+1

dζ = 0
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Proof in the case z0 = 0, continued

1
2πi

∫
C

f (ζ)

ζ − z
·
(

z
ζ

)n+1

dζ
0

z
R′

C

R

On C,∣∣∣∣ 1
ζ − z

∣∣∣∣ ≤ 1(R+R′

2 − R′
) =

2
R − R′

and∣∣∣∣zζ
∣∣∣∣n+1

=
|z|n+1

|ζ|n+1 ≤

[
R′(R′+R
2

)]n+1

=

(
2R′

R′ + R

)n+1

= αn+1

where α < 1
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Proof in the case z0 = 0, continued

Using these bounds we have∣∣∣∣∣ 1
2πi

∫
C

f (ζ)

ζ − z
·
(

z
ζ

)n+1

dζ

∣∣∣∣∣
≤ 1

2π
max
ζ∈C
|f (ζ)|

(
2

R − R′

)
αn+1

→ 0 as n→∞
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