Math 370 - Real Analysis

G.Pugh

Sep 17 2013

Real Numbers

Ordered Sets

- Definition: A is an ordered set if there exists a relation "<" such that</p>
 - (i) For any $x \in A$ and $y \in A$ exactly one of

$$x < y$$
, $x = y$, $y < x$

is true.

- (ii) If x < y and y < z then x < z
- (iii) \leq , >, \geq have the standard meaning.
- **Examples:** \mathbb{N} , \mathbb{Z} , \mathbb{Q} are ordered sets using the usual relation of "<".

Bounded Sets: Definitions

Let $E \subset A$ where A is an ordered set.

- ▶ Definition: If there is b ∈ A such that x ≤ b for every x ∈ E we say that E is bounded above and b is an upper bound for E.
- ▶ **Definition:** If b_0 is an upper bound for E and $b_0 \le b$ for every other upper bound b, then b_0 is called the least upper bound of E or the supremum of E, and we write

$$b_0 = \sup E$$
, read "soup of E "

- Definition: If there is a ∈ A such that x ≥ a for every x ∈ E we say that E is bounded below and a is a lower bound for E.
- ▶ **Definition:** If a_0 is a lower bound for E and $a_0 \ge a$ for every other lower bound a, then a_0 is called the greatest lower bound of E or the infimum of E, and we write

$$a_0 = \inf E$$
, read "inf of E "

Bounded Sets: Examples

► Example: $E = \{2, 3, 4\} \subset \mathbb{N}$.

1 is a lower bound for E, as is 2. 10 is an upper bound for E, as is 1000.

But inf E = 2, sup E = 4

▶ Example: $E = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \subset \mathbb{Q}$.

inf $E = 0 \not\in E$, sup $E = 1 \in E$

▶ Example: $E = \left\{ \sum_{k=0}^{n} \frac{1}{k!} \mid n \in \mathbb{N} \right\} \subset \mathbb{Q}$.

inf $E = 2 \in E$, sup E does not exist in \mathbb{Q} (sup E = e in fact).

Least Upper Bound Property

▶ Definition: An ordered set A has the least upper bound property if every nonempty subset E ⊂ A that is bounded above has a least upper bound in A.

That is, sup E exists and sup $E \in A$

- ▶ **Example:** We saw that \mathbb{Q} does not have the least upper bound property since sup $\left\{\sum_{k=0}^{n} \frac{1}{k!} \mid n \in \mathbb{N}\right\} \notin \mathbb{Q}$.
- ➤ To handle limits we need to extend Q to a field which has the least upper bound property.

Fields

Definition: A field is a set F together with two operations + and \cdot such that for any $x, y, z \in F$:

- 1. $x + y \in F$
- 2. x + y = y + x
- 3. (x + y) + z = x + (y + z)
- 4. There exists a zero element $0 \in F$ such that 0 + x = x
- 5. There exists an element -x such that x + (-x) = 0
- 6. $x \cdot y \in F$
- 7. $x \cdot y = y \cdot x$
- 8. $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
- 9. There exists a unit element $1 \in F$ such that $1 \cdot x = x$
- 10. If $x \neq 0$ there exists an element 1/x such that $(1/x) \cdot x = 1$
- 11. $x \cdot (y + z) = x \cdot y + x \cdot z$
- 12. $1 \neq 0$

Examples of Fields

- ▶ Familiar: $(\mathbb{Q}, +, \cdot)$ is a field
- More unusual: Recall that for a, p ∈ N, a mod p = remainder upon division of a by p

Let p be a prime number and $\mathbb{F} = \{0, 1, 2, \dots, p-1\}$.

For $a, b \in \mathbb{F}$ define $a +_{\mathbb{F}} b = a + b \mod p$

 $define a \cdot_{\mathbb{F}} b = ab \mod p$

Then $(\mathbb{F}, +_{\mathbb{F}}, \cdot_{\mathbb{F}})$ is a field

Ordered Fields

▶ Definition: An ordered set F is an ordered field if

F is a field (satisfies the field axioms),

$$\rightarrow$$
 $x > 0$ and $y > 0 \implies xy > 0$

▶ $(\mathbb{Q}, +, \cdot)$ is an ordered field, but $(\mathbb{F}, +_{\mathbb{F}}, \cdot_{\mathbb{F}})$ is not.

Ordered Fields

The usual notions of positive (x > 0) and negative (x < 0) are defined for ordered fields, and the familiar operations and results involving inequalities still hold:

Proposition: For $x, y, z \in F$ an ordered field,

- $\rightarrow x > 0 \implies -x < 0$
- x > 0 and $y < z \implies xy < xz$
- x < 0 and $y < z \implies xy > xz$
- $x \neq 0 \implies x^2 > 0$
- ▶ $0 < x < y \implies 0 < 1/y < 1/x$

The Real Numbers

- ▶ **Theorem:** There exists a unique ordered field $\mathbb R$ with the least upper bound property such that $\mathbb Q \subset \mathbb R$
- Note: There are several techniques for constructing \mathbb{R} . Two of the more popular are construction using Cauchy sequences, and construction using Dedekind cuts.
- In summary:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$

where $\mathbb Q$ and $\mathbb R$ are ordered fields, but only $\mathbb R$ has the least upper bound property.

- ▶ \mathbb{N} , \mathbb{Z} and \mathbb{Q} are countably infinite, but \mathbb{R} is uncountable.
- ▶ The set of irrational numbers $\mathbb{R} \setminus \mathbb{Q}$ is uncountable.