- 1. Text Exercise 2.4.4
- 2. Text Exercise 2.5.1
- 3. Text Exercise 2.5.2
- 4. Text Exercise 2.5.3 (a) & (c)
- 5. Text Exercise 2.5.4
- 6. Suppose $\sum_{n=1}^{\infty} x_n$ is conditionally convergent, and define
 - $a_n = \max \{x_n, 0\}$ $b_n = \min \{x_n, 0\}$

Show that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are both divergent.

- 7. (A bit more challenging) Find an infinite collection of closed discs D_1 , D_2 , D_3 , ... in the plane with centres c_1 , c_2 , c_3 , ..., respectively, such that
 - (a) Every line in the plane intersects at least one of the D_i , and
 - (b) The sum of the areas of the D_i is finite.

(hint: Let $c_n = \sum_{k=1}^n 1/k$. Think about covering the positive x-axis with disks having centres $(c_n, 0)$ and radii which ensure the disks overlap. Then apply this same construction to the remaining sections of the axes.)