Question 1 [10 points]:

(a) Determine all values of the angle θ in $[0,2\pi]$ such that $\sec{(\theta)}=2$.

[3]

(b) Determine the exact value and simplify: $\sin(\pi/3) - \tan(3\pi/4)$

[3]

(c) Find all values of x in the interval $[0, 2\pi]$ that satisfy the equation $\sin x = \tan x$.

Question 2 [3 points]: A sphere (a ball) of radius r has volume $V=\frac{4}{3}\pi r^3$ and surface area $S=4\pi r^2$. Express the volume V as a function of the surface area S.

[3]

Question 3 [4 points]: Let $f(x) = x^2 - 2x$. Evaluate and simplify the difference quotient $\frac{f(4+h) - f(4)}{h}$.

[4]

Question 4 [3 points]: Determine the domain of $f(x) = \frac{\sqrt{3x-1}}{x^2-9}$.

Question 5 [3 points]: Let $H(x) = \frac{1}{\sqrt{3-\cos(x)}}$. If g(x) = 3-x, find functions f(x) and h(x) so that $H(x) = (f \circ g \circ h)(x)$.

[3]

Question 6 [3 points]: Let $f(x) = \sqrt{x+1}$ and $g(x) = \frac{1}{x^2-1}$. Determine $(g \circ f)(x)$ and state the domain.

[3]

Question 7 [3 points]: Evaluate the following limit if it exists: $\lim_{x\to 0} \frac{\sin^2(x)}{\cos(3x) - \sin(2x)}$

Question 8 [11 points]: Evaluate the following limits, if they exist:

(a)
$$\lim_{x \to 1} \frac{\left(\frac{1}{x} - 1\right)}{x - 1}$$

(b)
$$\lim_{h\to 0} \frac{\sqrt{5h+4}-2}{h}$$

(c)
$$\lim_{x\to 2} \frac{x^2+5x+6}{\sqrt{x+2}-2}$$

[4]

Math 121 - Test 1

Sep 19 2013

Question 9 [10 points]: Evaluate the following limits, if they exist:

(a)
$$\lim_{t\to -1} \frac{t^2-t-2}{t^2+3t+2}$$

(b)
$$\lim_{x \to 0^+} \left(\frac{1}{x^2 + x} \right) - \frac{1}{x}$$