Curve Sketching Fall 2013

3 Curve Sketching

So far we have seen that

(i) If f'(x) > 0 on an interval then the graph of y = f(x) is increasing on the interval;

- (ii) If f'(x) < 0 on an interval then the graph of y = f(x) is decreasing on the interval;
- (iii) If f''(x) > 0 on an interval then the graph of y = f(x) is concave up on the interval;
- (iv) If f''(x) < 0 on an interval then the graph of y = f(x) is concave down on the interval.

Using this information we then located relative extrema and inflection points, and we sketched a fairly accurate picture of the graph of y = f(x).

We now improve our graph by making use of additional information:

- (i) The x-intercepts of y = f(x),
- (ii) the *y*-intercept of y = f(x),
- (iii) the horizontal asymptotes of y = f(x), and
- (iv) the vertical asymptotes of y = f(x).

Example 1

Let
$$f(x) = \frac{(x-1)^2}{(x-3)^2}$$
. Determine the

- (i) x-intercepts
- (ii) *y*-intercepts
- (iii) vertical asymptotes
- (iv) horizontal asymptotes
- (v) intervals of increase/decrease
- (vi) local extreme values
- (vii) intervals of concavity
- (viii) inflection points

Sketch the graph of y = f(x).

Example 2

Suppose we have analyzed the function y = f(x) and found the following information:

- (i) The domain of f is $(-\infty, 1) \cup (1, \infty)$.
- (ii) f(x) has the following function values:

Χ	-3	-2	-1	-1/2	0	1/2	3	4
f(x)	3/2	2	1	0	-1/2	0	-1	-3/2

(iii)
$$\lim_{x\to-\infty} f(x) = 1$$
, $\lim_{x\to\infty} f(x) = -2$

(iv)
$$\lim_{x\to 1^{-}} f(x) = \infty$$
, $\lim_{x\to 1^{+}} f(x) = -\infty$

(v)
$$f'(-2) = f'(0) = f'(3) = 0$$

(vi)
$$f'(x) > 0$$
 on $(-\infty, -2)$, $(0, 1)$ and $(1, 3)$; $f'(x) < 0$ on $(-2, 0)$ and $(3, \infty)$

(vii)
$$f''(-3) = f''(-1) = f''(4) = 0$$

(viii)
$$f''(x) > 0$$
 on $(-\infty, -3)$, $(-1, 1)$ and $(4, \infty)$; $f''(x) < 0$ on $(-3, -1)$ and $(1, 4)$

Sketch the graph of y = f(x).