Math 370 - Complex Analysis

G.Pugh

Nov 27 2012

Zeros and Singularities

Zeros of Analytic Functions

▶ **Definition:** A zero of a function f is a point z_0 where f is analytic and $f(z_0) = 0$.

▶ **Definition:** z_0 is a zero of order m of f if f is analytic at z_0 and $f(z_0) = 0$, $f'(z_0) = 0$, $f''(z_0) = 0$, ..., $f^{(m-1)}(z_0) = 0$, but $f^{(m)}(z_0) \neq 0$.

Zeros of Analytic Functions

So, if f has a zero of order m at z₀, then the Taylor series for f about z₀ takes the form

$$f(z) = \frac{f^{(m)}(z_0)}{m!}(z-z_0)^m + \frac{f^{(m+1)}(z_0)}{(m+1)!}(z-z_0)^{m+1} + \cdots$$

$$= (z-z_0)^m \left[a_m + a_{m+1}(z-z_0) + a_{m+2}(z-z_0)^2 + \cdots \right]$$

$$= (z-z_0)^m g(z)$$

where g(z) is analytic at z_0 and $g(z_0) \neq 0$ in a neighbourhood of z_0 .

Example: $f(z) = \cos(z) - 1 + z^2/2$ has a zero of order 4 at z = 0 since

$$f(z) = \frac{z^4}{4!} - \frac{z^6}{6!} + \cdots$$

Isolated Singularities of Analytic Functions

- ▶ **Definition:** An isolated singularity of a function f is a point z_0 such that f is analytic in some punctured disk $0 < |z z_0| < R$ but f is not analytic at z_0 itself.
- **Example:** $f(z) = \exp(z)/(z-i)$ has an isolated singularity at z = i.
- ▶ If f has an isolated singularity at z₀, then it has a Laurent series representation

$$f(z) = \sum_{j=-\infty}^{\infty} a_j (z - z_0)^j$$

in the punctured disk.

Singularities are classified based on the form of the Laurent Series.

Isolated Singularities of Analytic Functions

Definition: Suppose f has an isolated singularity at z_0 and that

$$f(z) = \sum_{j=-\infty}^{\infty} a_j (z - z_0)^j$$

on $0 < |z - z_0| < R$.

- ▶ If $a_j = 0$ for all j < 0, so that $f(z) = \sum_{j=0}^{\infty} a_j (z z_0)^j$, then z_0 is called a removable singularity.
- ▶ If $a_{-m} \neq 0$ for some positive integer m but $a_j = 0$ for all j < -m, then z_0 is called a pole of order m of f.
- ▶ If $a_j \neq 0$ for infinitely many j < 0 then z_0 is called an essential singularity of f.

Removable Singularities

Suppose f has a removable singularity at z_0 . Then

$$f(z) = \sum_{j=0}^{\infty} a_j (z - z_0)^j$$

= $a_0 + a_1 (z - z_0) + a_2 (z - z_0)^2 + \cdots$

Example:
$$\frac{e^z - 1}{z} = 1 + \frac{z}{2!} + z^2 3! + \cdots$$

- f is bounded in some punctured circular neighbourhood of Z₀
- ▶ $\lim_{z\to z_0} f(z)$ exists.
- ▶ f can be redefined at $z = z_0$ so that the new function is analytic at z_0 . Define $f(z_0) = a_0$.

Poles

Suppose f has a pole of order m at z_0 . Then

$$f(z) = \frac{a_{-m}}{(z-z_0)^m} + \frac{a_{-m+1}}{(z-z_0)^{m-1}} + \dots + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \dots$$

Example:
$$\frac{\cos z}{z^2} = \frac{1}{z^2} - \frac{1}{2} + \frac{z^2}{4!} + \cdots$$
 has a pole of order 2 at $z = 0$

- ▶ $(z z_0)^m f(z)$ has a removable singularity at z_0
- $\blacktriangleright \lim_{z\to z_0}|f(z)|=\infty.$
- ▶ **Lemma:** f has a pole of order m at z_0 if and only if $f(z) = g(z)/(z-z_0)^m$ in some punctured neighbourhood of z_0 where g is analytic and not zero at z_0 .
- ▶ **Lemma:** If f has a zero of order m at z_0 then 1/f has a pole of order m. If f has a pole of order m at z_0 , then 1/f has a removable singularity at z_0 , and 1/f has a zero of order m at z_0 if we define $(1/f)(z_0) = 0$.

Essential Singularities

Suppose f has an essential singularity at z_0 . Then

$$f(z) = \cdots + \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{(z-z_0)} + a_0 + a_1(z-z_0) + a_2(z-z_0)^2 + \cdots$$

Example:
$$\exp(1/z) = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \frac{1}{3!z^3} + \cdots$$

Theorem (*Picard*): A function with an essential singularity at z_0 assumes every complex number, with possibly one exception, as a value in any neighbourhood of z_0 .

Summary

Theorem: Suppose f has an isolated singularity at z_0 . Then

- ▶ z_0 is a removable singularity $\Leftrightarrow |f|$ is bounded near $z_0 \Leftrightarrow \lim_{z \to z_0} f(z)$ exists $\Leftrightarrow f$ can be redefined at z_0 so that f is analytic at z_0 .
- ▶ z_0 is a pole $\Leftrightarrow \lim_{z \to z_0} |f(z)| = \infty \Leftrightarrow f(z) = g(z)/(z z_0)^m$ in some punctured neighbourhood of z_0 where g is analytic and not zero at z_0 .
- ▶ z_0 is an esential singularity $\Leftrightarrow |f(z)|$ is neither bounded near z_0 nor goes to ∞ as $z \to z_0 \Leftrightarrow f$ assumes every complex number, with possibly one exception, as a value in any neighbourhood of z_0 .

Can use this theorem to classify isolated singularities without constructing the Laurent Series.