- 1. Simplify and express in the form a+bi: $\frac{5+5i}{(1+3i)(\frac{1}{2}-\frac{i}{2})}$.
- 2. Determine and sketch all cube roots of $8(1-\sqrt{3}i)$.
- 3. Evaluate $|e^{iz}|$ if $z = 6e^{i\pi/3}$.
- 4. Determine the points, if any, at which $f(z) = |\bar{z} i|^2$ is analytic.
- 5. Determine the harmonic conjugate of $u(x, y) = 3x^2y y^3 + x + 4xy$.
- 6. Can $u(x, y) = xy^2$ be the real part of an entire function? Explain.
- 7. Find all values of $i^{Log(i)}$.
- 8. Evaluate $\int_{\Gamma} \operatorname{Re}(z) dz$ where
 - (a) Γ is a line from z = 0 to z = 1 + i
 - (b) Γ is a line segment from from z=0 to z=i followed by a line segment from z=i to z=1+i .
- 9. Evaluate $\int_C \frac{\cos z}{e^z 1} dz$ where C is the circle |z 2i| = 1 traversed once in the positive direction.
- 10. Evaluate $\int_{\Gamma} \frac{1}{z} dz$ where Γ is any simple contour from z=-2 to z=-i which does not leave the third quadrant.
- 11. Evaluate $\int_C \frac{z^3}{(z+i)(z+2)^2} dz$ where C is the circle
 - (a) |z| = 1/2
 - (b) |z| = 3/2
 - (c) |z+2|=1/2
 - (d) |z| = 3

In each case the circle is traversed once in the positive direction.

- 12. Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in a Laurent series valid for 1 < |z| < 3.
- 13. Show that $f(z) = \frac{1 + \cos(\pi z)}{(z^2 1)^2}$ has a removable singularity at z = -1 (You may use L'Hospital's rule here.)
- 14. Use the residue theorem to evaluate the following integrals. In each case the circles are traversed once in the positive direction:

(a)
$$\int_{|z|=2} \frac{z^3 + 2z}{z - i} dz$$

(b)
$$\int_{|z|=1} z^2 e^{1/z} dz$$