1. Evaluate the following integrals over the indicated contours. In each case the contour is traversed once in the positive direction. State any theorems used in your calculation.

(a)
$$\int_{\Gamma} \frac{z^2}{z+3} dz$$
 where Γ is the circle of radius 2 and centre $z = 0$.

(b)
$$\int_{\Gamma} \frac{z^2}{z+3} dz$$
 where Γ is the circle of radius 4 and centre $z = 0$.

- (c) $\int_{\Gamma} \frac{2\cos^2 z}{z^2 + 7z + 7} dz$ where Γ is the unit circle .
- (d) $\int_{\Gamma} \frac{e^z}{z} dz$ where Γ is the square bounded by the lines $|\operatorname{Re}(z)| = 2$ and $|\operatorname{Im}(z)| = 2$.

(e)
$$\int_{\Gamma} \frac{z^2}{(z^2+1)^2} dz$$
 where Γ is the semi-circle $\{z : z = t + 0i, -R \le t \le R\} \cup \{z : z = Re^{it}, 0 \le t \le \pi\}$

2. Prove the Maximum Modulus Principle: If f(z) is analytic inside and on a simple closed contour Γ then the maximum of |f(z)| occurs on Γ .

Hint: proceed as follows: Let z_0 be any point inside Γ and let M be the maximum of |f(z)| on Γ . We will show that $|f(z_0)| \leq M$.

(a) Let $n \ge 1$ be an integer. Then

$$[f(z_0)]^n = \frac{1}{2\pi i} \int_{\Gamma} \frac{[f(\zeta)]^n}{\zeta - z_0} d\zeta \quad \text{(why?)}$$
(1)

(b) Let μ be the minimum distance from z_0 to Γ and $\ell(\Gamma)$ be the length of Γ . Use (1) to show that

$$|f(z_0)|^n \le \frac{1}{2\pi} \frac{M^n}{\mu} \ell(\Gamma)$$
(2)

(c) Take n^{th} roots of both sides of (2) and then let $n \to \infty$.