Question 1. [10]:

(a)[5] Compute $\iint_{D} (x^2 + 2y) dA$ where D is the region in the first quadrant that is bounded between the curves y = x and $y = x^3$.

(b)[5] Evaluate $\int_0^1 \int_x^1 e^{x/y} dy dx$ by first changing the order of integration.

Question 2. [10]: The upper hemisphere of a sphere of radius *a* is given by $z = \sqrt{a^2 - x^2 - y^2}$. Determine the volume of the hemisphere using polar coordinates.

(You may know the answer directly thanks to a well-known formula; you are required here to show how to get that answer.)

Question 3. [10]: Evaluate $\iiint_E y \, dA$ where *E* is the solid region in the first octant that lies under the plane 3x + y + z = 1.

Question 4. [10]: The sphere *B* of radius *a* has equation $x^2 + y^2 + z^2 = a^2$ and volume $V(B) = 4\pi a^3/3$. The average distance from a point in the sphere to its centre is defined to be

$$\rho_{\rm avg} = \frac{1}{V(B)} \iiint_B \sqrt{x^2 + y^2 + z^2} \, dV$$

Compute $\rho_{\rm avg}$.

Question 5 [10]: For this question we will use a transformation to evaluate $\iint_R (x+y)e^{x^2-y^2} dA$ where R is the rectangle with vertices (0,0), (3/2,3/2), (1,-1), (5/2,1/2).

(a)[2] The transformation is u = x + y, v = x - y. Determine $\frac{\partial(x, y)}{\partial(u, v)}$, the Jacobian of the transformation.

(b)[3] Determine the region in the *uv*-plane that maps onto *R* under the transformation.

(c)[5] Use parts (a) and (b) to evaluate $\iint_R (x+y)e^{x^2-y^2} dA$.