Some useful formulas:

$$A = P\left(1 + \frac{r}{n}\right)^{nt} \qquad A = P\left(1 + rt\right)$$

$$A = P\left[\frac{(1+i)^m - 1}{i}\right] \qquad V = P\left[\frac{1 - (1+i)^{-m}}{i}\right]$$

(1) [5] How much should be deposited now in order to have \$100 after two years if the interest rate is 3% compounded monthly?

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$P = \frac{A}{\left(1 + \frac{r}{n}\right)^{nt}}$$

$$= \frac{100}{\left(1 + \frac{0.03}{12}\right)^{(12)(2)}}$$

$$= \boxed{\$94.18}$$

(2) [5] What rate of interest compounded annually is required to double an investment in 3 years?

Solve:
$$\Re(1+\frac{r}{1})^{(1)(3)} = 2\Re(1+\frac{r}{1})^3 = 2\Re(1+\frac{r}{1})^3$$

(3) [5] A person wishes to accumulate \$12,000 to buy a car three years from now. Equal deposits will be made at the end of every three months into an account paying 2% compounded quarterly. How much should each deposit be in order to reach the \$12,000 goal?

$$A = P \left[\frac{(1+i)^m - 1}{i} \right]$$

Here
$$A = 12,000$$

 $m = (3)(4) = 12$
 $i = 0.02 = 0.005$

$$P = \frac{i A}{(1+i)^{m}-1}$$

$$= \frac{(0.005)(12000)}{(1+0.005)^{T2}-1}$$

$$= \frac{\$972.80}{}$$

Timeline here is:

P P P

quarters:
0 1 2 3

12

12,000