Additional Problems for Assignment 4

1. Suppose $\sum_{n=1}^{\infty} x_n$ is conditionally convergent, and define

$$a_n = \max\{x_n, 0\}$$
$$b_n = \min\{x_n, 0\}$$

Show that
$$\sum_{n=1}^{\infty} a_n$$
 and $\sum_{n=1}^{\infty} b_n$ are both divergent.

- 2. Find an infinite sequence of closed discs D_1, D_2, D_3, \ldots in the plane with centres c_1, c_2, c_3, \ldots , respectively, such that
 - (a) Every line in the plane intersects at least one of the D_i , and
 - (b) The sum of the areas of the D_i is finite.

(hint: think about the harmonic series, and focus on the axes.)

3. Determine $\lim_{x \to 2} \frac{1}{x}$. Prove your result using the $\epsilon \delta$ definition of the limit.