Question 1:
(a) [8] Use matrix reduction to solve the following system of equations:

$$
\begin{aligned}
& 6 x+y=8 \\
& x-3 y=-5 \\
& 2 x+y=2
\end{aligned}
$$

(b)[2] Is the system of equations in (a) consistent or inconsistent?

Question 2: For this problem use the following matrices:

$$
\mathbf{A}=\left[\begin{array}{rr}
1 & 0 \\
2 & 4 \\
-1 & 2
\end{array}\right] \quad \mathbf{B}=\left[\begin{array}{rrr}
4 & -3 & 0 \\
1 & 1 & -2
\end{array}\right] \quad \mathbf{C}=\left[\begin{array}{rr}
3 & -4 \\
1 & 4 \\
5 & -2
\end{array}\right] \quad \mathbf{D}=\left[\begin{array}{r}
-6 \\
1
\end{array}\right]
$$

(a) [4] Compute $(3 \mathbf{A}-4 \mathbf{C}) \mathbf{D}$
(b) $[4]$ Compute $\mathrm{AB}-3 \mathbf{I}_{3}$
(c)[2] Suppose there is some matrix \mathbf{P} such that the product BPA is defined. What must be the dimension of the matrix \mathbf{P} ?

Question 3:
(a) [7] Determine \mathbf{A}^{-1} where \mathbf{A} is the matrix

$$
\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & 3 \\
1 & 0 & 2
\end{array}\right]
$$

(b)[3] Use your result in part (a) to solve the following system of equations:

$$
\begin{aligned}
x-y & =-3 \\
-x+2 y+3 z & =-1 \\
x+2 z & =7
\end{aligned}
$$

Question 4 [10 points]: A certain animal requires at least 30 grams of protein and 20 grams of fat each feeding. Two foods are available: food A costs $\$ 0.18$ per unit, and each unit supplies 2 grams of protein and 4 grams of fat. Food B costs $\$ 0.12$ per unit, and each unit provides 6 grams of protein and 2 grams of fat. At least 2 units of food B must be used each feeding. How many units of foods A and B should be used each feeding to minimize cost?

Graph paper is provided on the next page. Carefully set up the problem, neatly sketch any required graphs and state a clear conclusion.

Question 4 (continued)

