Name: Stu#:

SOLUTIONS.

(1) [7] Suppose

$$U = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, \quad A = \{0, 1, 5, 7\}, \quad B = \{0, 2, 3, 5, 8\}, \quad C = \{5, 6, 8, 9\}$$

(i) Determine  $\overline{B \cap A}$ 

Bn A = 
$$\{0,5\}$$
  
 $BnA = \{1,2,3,4,6,7,8,9\}$ 

(ii) Determine  $(A \cap B) \cup (B \cap C)$ 

AnB = 
$$\{0,5\}$$
  
Bnc =  $\{5,8\}$ 

$$\therefore (AnB) \cup (BnC) = \{0,5,8\}.$$

(2) [4] Using the 26 letters of the alphabet, how many different five letter codes are possible if adjacent letters within the codes must be different? (That is, a code can have multiple occurrences of the same letter, as in ababa, but codes having two of the same letter side-by-side are not permitted, as with aabab.)

There are 26 choices for the first letter,

and 25 choices for each of the next 4 letters

(since each letter after the first must differ from the one immediately before.)

% by the multiplication principle there are (26)(25)(27)(25)(25) = 10,156,250 possible codes.

Name: Solutions.

(3) [4] How many different ways are there of arranging the letters in the word SUNDAY if the arrangements must begin with S and end with Y?

This is equivalent to asking for the number of possible arrangements of the letters UNDA, which is P(4,4) = 41 = 24