Math 161 Lecture 2

Glen Pugh

September 8, 2007

(1) Chapter 2: Samples, Good and Bad
(2) Chapter 3: What Do Samples Tell Us?

Chapter 2: Samples, Good and Bad

Overview

- We wish to obtain information about a population by choosing a sample and gathering information from the individuals which make up the sample.
- Expectation (or hope!): The sample is representative of the entire population.
- Choose sample with care: Use chance!
- Convenience Sampling: Sample consists of individuals which are easiest to reach.
- Problem: Sample not representative of population of interest.
- Example: Ontario welfare reform in 1995-reduced benefits resulted in reduced welfare ranks. A 1996 telephone poll of people who had gone off welfare found that 62% of these people listed finding a job as their reason for no longer collecting welfare. Aha! claimed the government, 62% of those previously on welfare are now working thanks to the reforms.

First: How not to Sample

- Voluntary Response Sample: Sample consists of individuals who elect to respond to a question/study.
- Problem: People with strong feelings about the issue tend to respond- sample not representative of population of interest.
- Examples:
- RateMyProfessors.com
- B.C. Treaty Referendum of 2002
- Convenience Sampling and Voluntary Response Sampling introduce bias into a statistical study.
- Bias: The systematic favoring of one outcome over another.
- Example: Evaluate a professor by asking all failing students if they were satisfied with the professor's teaching.

Avoiding Bias: Simple Random Samples

- Use chance to select a sample from the population of interest
- Simple Random Sample (or SRS): An SRS of size n is a sample of n individuals chosen from a population in such a way that every sample of size n has the same chance of being selected.
- Selecting an SRS: To select an SRS of size n :
- Label each individual in the population with a unique number.
- Randomly draw n numbers from the collection of numbers representing the population.
- The n individuals with labels matching the numbers drawn form the sample.

Selecting an SRS: Table of Random Digits

- Table of Random Digits: A table made up of digits from 0 to 9 , each entry in the list equally likely to be any of the digits 0 through 9 , each entry independent of the others.
- See Table A on page 550 of text
- Example: Choose an SRS of size 5 from the class using line 122 of Table A.
- More practical (and modern) method of choosing an SRS: Use computer software.
- Some web-based random number generators:
- http://bcs.whfreeman.com/scc6e and click on 'Statistical Applets', then click on 'Simple Random Sample’ (Java required).
- http://www.randomizer.org/form.htm
- Example: Choose an SRS of size 5 from the class.

Chapter 3: What Do Samples Tell Us?

Putting our SRS to Work

- We use an SRS as a snapshot of the entire population.
- We wish to use facts about our SRS to make estimates about the entire population.

Putting our SRS to Work: Example

- Example (from first day): What proportion (or percentage) of Americans believe there is solid evidence that the earth is warming?
- Take an SRS of 1708 adult Americans and ask them the question.
- We find that 1315 of the 1708 people surveyed believe the earth is warming.
- So we estimate that

$$
\frac{1315}{1708}=0.769=77 \%
$$

of the entire population believes the earth is warming.

- Need terminology to distinguish between the quantities used to describe the entire population and those used to describe the sample.
- Parameter: Number (usually unknown) which describes the entire population.
- Statistic: Number (known) which describes a sample.

Parameters and Statistics: Example

- Example:
- Let $p=$ true (but unknown) proportion of Americans who believe there is solid evidence that the earth is warming.
- p is a parameter.
- Let $\hat{p}=$ proportion of our sample of 1708 adult Americans who believe there is solid evidence that the earth is warming.
- \hat{p} is a sample statistic. (\hat{p} is read as " p hat").
- Notice the notation: The "hat" denotes the statistic used to estimate the corresponding parameter. For example, if c is some parameter, then \hat{c} would be the corresponding statistic used to estimate c.
- We expect that an SRS from a population avoids bias and gives a statistic which is a good estimate for the corresponding population parameter.
- If we take a second SRS and calculate the same statistic, it is unlikely that its value will be exactly the same as the first, but we expect it to be close.
- If we continue this, taking many SRS's and calculate statistics, will the results all be close or quite spread out?

Variability Demo from Text

Simplified Example: Suppose we have a population of 300,000,000 of which half $150,000,000$ are males, other half females.

- Let $p=$ male proportion of the population, so $p=1 / 2=0.5$
- Repeatedly take SRS's of size $n=100$ and for each sample determine $\hat{p}=$ male proportion of the sample.
- Plot the results on a histogram:
<See Figure 3.1 on p. 36 of text>

Same Example, only this time we take SRS's of size $n=2527$, and again $\hat{p}=$ male proportion of the sample:

- Notice in both examples most values of \hat{p} are centered around the true value of $p=0.5$
- The \hat{p} values from the $n=100$ sample size are more spread out compared to those of the $n=2527$ sample size.
- In general, increasing the sample size reduces the variability.

Bias and Variability in a Nutshell

- Bias: Consistent, repeated deviation of the sample statistic from the population parameter in the same direction when we take many samples.
- To reduce bias use random sampling.
- Variability: How spread out the values of the sample statistics are when many samples are taken.
- To reduce variability of an SRS use a larger sample size.
- Back to our Example: Recall our example which stated that 77\% of adult Americans believe there is solid evidence that the earth is warming.
- We were told that the survey was "accurate to within 3% nineteen times out of twenty".
- This is called a confidence statement.
- What does this mean?

Confidence Statement: Translation

- First, $\frac{19}{20}=0.95=95 \%$, so "nineteen times out of twenty" means 95\%.
- "the survey was accurate to within 3% nineteen times out of twenty"
means
"if we repeated this survey over and over, 95% of the samples would give a sample statistic within 3 percentage points of the true (unknown) value of the population parameter"
- The 3\% in this case is called the margin of error, and depends on the sample size.
- The 95% is called the confidence level and tells us how much we can trust the result of a single sample.

Margin of Error

- Increasing the sample size reduces the margin of error.
- How does sample size translate into margin of error?
- Rule of thumb: If estimating a population proportion p using a sample proportion \hat{p} from a SRS of size n, and assuming a 95% confidence level, the margin of error is approximately $1 / \sqrt{n}$.
- Example: In our earth warming example, the sample size was 1708, so we expect the margin of error to be

$$
\frac{1}{\sqrt{1708}}=0.024=2.4 \%
$$

Not exactly 3\%, but close!

Once again, consider the study of the proportion of Americans who believe there is solid evidence that the earth is warming. Assuming a 95\% confidence level, suppose we wish the margin of error to be only 1%. How large a sample is required?

