Linear Approximation

Introduction

By now we have seen many examples in which we determined the tangent line to the graph of a function $f(x)$ at a point $x=a$. A linear approximation (or tangent line approximation) is the simple idea of using the equation of the tangent line to approximate values of $f(x)$ for x near $x=a$.

A picture really tells the whole story here. Take a look at the figure below in which the graph of a function $f(x)$ is plotted along with its tangent line at $x=a$. Notice how, near the point of contact $(a, f(a))$, the tangent line nearly coincides with the graph of $f(x)$, while the distance between the tangent line and graph grows as x moves away from a.

Figure 1: Graph of $f(x)$ with tangent line at $x=a$

In other words, for a given value of x close to a, the difference between the corresponding y value on the graph of $f(x)$ and the y value on the tangent line is very small.

The Linear Approximation Formula

Translating our observations about graphs into practical formulas is easy. The tangent line in Figure 1 has slope $f^{\prime}(a)$ and passes through the point $(a, f(a))$, and so using the point-slope formula $y-y_{0}=m\left(x-x_{0}\right)$, the equation of the tangent line can be expressed

$$
y-f(a)=f^{\prime}(a)(x-a),
$$

or equivalently, isolating y,

$$
y=f(a)+f^{\prime}(a)(x-a)
$$

(Observe how this last equation gives us a new simple and efficient formula for the equation of the tangent line.) Again, the idea in linear approximation is to approximate the y values on the graph $y=f(x)$ with the y values of the tangent line $y=f(a)+f^{\prime}(a)(x-a)$, so long as x is not too far away from a. That is,

$$
\begin{equation*}
\text { for } x \text { near } a, f(x) \approx f(a)+f^{\prime}(a)(x-a) \tag{1}
\end{equation*}
$$

Equation (1) is called the linear approximation (or tangent line approximation) of $f(x)$ at $x=a$. (Instead of "at", some books use "about", or "near", but it means the same thing.)

Notice how we use " \approx " instead of "=" to indicate that $f(x)$ is being approximated. Also notice that if we set $x=a$ in Equation (1) we get true equality, which makes sense since the graphs of $f(x)$ and the tangent line coincide at $x=a$.

A Simple Example

Let's look at a simple example: consider the function $f(x)=\sqrt{x}$. The tangent line to $f(x)$ at $x=1$ is $y=x / 2+1 / 2$ (so here $a=1$ is the x value at which we are finding the tangent line.) This is actually the function and tangent line plotted in Figure 1. So here, for x near $x=1$,

$$
\sqrt{x} \approx \frac{x}{2}+\frac{1}{2} .
$$

To see how well the approximation works, let's approximate $\sqrt{1.1}$:

$$
\begin{aligned}
\sqrt{1.1} & \approx \frac{1.1}{2}+\frac{1}{2} \\
& =1.05
\end{aligned}
$$

Using a calculator, we find $\sqrt{1.1} \doteq 1.0488$ to four decimal places. So our approximation has an error of about 0.1%; not bad considering the simplicity of the calculation in the linear approximation!

On the other hand, if we try to use the same linear approximation for an x value far from $x=1$, the results are not so good. For example, let's approximate $\sqrt{0.25}$:

$$
\begin{aligned}
\sqrt{0.25} & \approx \frac{0.25}{2}+\frac{1}{2} \\
& =0.625
\end{aligned}
$$

The exact value is $\sqrt{0.25}=0.5$, so our approximation has an error of 25%, a pretty poor approximation.

More Examples

Example 1: Find the linear approximation of $f(x)=x \sin \left(\pi x^{2}\right)$ about $x=2$. Use the approximation to estimate $f(1.99)$.

Solution: Here $a=2$ so we need $f(2)$ and $f^{\prime}(2)$:

$$
f(2)=2 \sin (4 \pi)=0
$$

while

$$
f^{\prime}(x)=\sin \left(\pi x^{2}\right)+x \cos \left(\pi x^{2}\right) 2 \pi x
$$

so that

$$
f^{\prime}(2)=\sin (4 \pi)+8 \pi \cos (4 \pi)=8 \pi .
$$

Therefore the linear approximation is

$$
f(x) \approx f(2)+f^{\prime}(2)(x-2)
$$

i.e.

$$
\text { for } x \text { near } 2, x \sin \left(\pi x^{2}\right) \approx 8 \pi(x-2)
$$

Using this to estimate $f(1.99)$, we find

$$
f(1.99) \approx 8 \pi(1.99-2)=-0.08 \pi \doteq-0.251
$$

to three decimals. (Checking with a calculator we find $f(1.99) \doteq-0.248$ to three decimals.)

Example 2: Use a tangent line approximation to estimate $\sqrt[3]{28}$ to 4 decimal places.

Solution: In this example we must come up with the appropriate function and point at which to find the equation of the tangent line. Since we wish to estimate $\sqrt[3]{28}, f(x)=x^{1 / 3}$. For the a-value
in Equation (1) we ask: at what value of x near 28 do we know $f(x)$ exactly? Answer: $x=27$, which is a perfect cube.

Thus, using $f(x)=x^{1 / 3}$ we find $f^{\prime}(x)=(1 / 3) x^{-2 / 3}$, so that $f(27)=3$ and $f^{\prime}(27)=1 / 27$. The linear approximation formula is then

$$
f(x) \approx f(27)+f^{\prime}(27)(x-27)
$$

i.e., for x near 27 ,

$$
x^{1 / 3} \approx 3+\frac{1}{27}(x-27)
$$

Using this to approximate $\sqrt[3]{28}$ we find

$$
\begin{aligned}
\sqrt[3]{28} & \approx 3+\frac{1}{27}(28-27) \\
& =\frac{82}{27} \\
& \doteq 3.0370
\end{aligned}
$$

A calculator check gives $\sqrt[3]{28} \doteq 3.0366$ to 4 decimals.

Example 3: Consider the implicit function defined by

$$
3\left(x^{2}+y^{2}\right)^{2}=100 x y
$$

Use a tangent line approximation at the point $(3,1)$ to estimate the value of y when $x=3.1$.

Solution: Even though y is defined implicitly as a function of x here, the tangent line to the graph of $3\left(x^{2}+y^{2}\right)^{2}=100 x y$ at $(3,1)$ can easily be found and used to estimate y for x near 3 .

First, find y^{\prime}. Differentiating both sides of $3\left(x^{2}+y^{2}\right)^{2}=100 x y$ with respect to x gives

$$
6\left(x^{2}+y^{2}\right)\left(2 x+2 y y^{\prime}\right)=100 y+100 x y^{\prime} .
$$

Now substitute $(x, y)=(3,1)$:

$$
6(9+1)\left(6+2 y^{\prime}\right)=100+300 y^{\prime}
$$

which yields $y^{\prime}=13 / 9$. Thus the equation of the tangent line is

$$
\begin{aligned}
y-1 & =\frac{13}{9}(x-3), \text { or } \\
y & =\frac{13}{9} x-\frac{30}{9} .
\end{aligned}
$$

Thus, for points (x, y) on the graph of $3\left(x^{2}+y^{2}\right)^{2}=100 x y$ with x near 3 ,

$$
y \approx \frac{13}{9} x-\frac{30}{9}
$$

Setting $x=3.1$ in this last equation gives $y \approx 103 / 90 \doteq 1.14$ to two decimals.

Exercises

1. Physicists often use the approximation $\sin x \approx x$ for small x. Convince yourself that this is valid by finding the linear approximation of $f(x)=\sin x$ at $x=0$.
Solution For x near $0, f(x) \approx f(0)+f^{\prime}(0)(x-0)$. Using $f(x)=\sin x, f(0)=\sin (0)=0$ and $f^{\prime}(0)=\cos (0)=1$ we find $\sin x \approx x$.
2. Find the linear approximation of $f(x)=x^{3}-x$ about $x=1$ and use it to estimate $f(0.9)$.

Solution For x near $1, f(x) \approx f(1)+f^{\prime}(1)(x-1)$. Using $f(x)=x^{3}-x, f(1)=0$ and $f^{\prime}(1)=2$ we find $f(x) \approx 2(x-1)$, so $f(0.9) \approx 2(0.9-1)=-0.2$.
3. Use a linear approximation to estimate $\cos 62^{\circ}$ to three decimal places. Check your estimate using your calculator. For this problem recall the trig value of the special angles:

θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
$\pi / 3$	$\sqrt{3} / 2$	$1 / 2$	$\sqrt{3}$
$\pi / 4$	$1 / \sqrt{2}$	$1 / \sqrt{2}$	1
$\pi / 6$	$1 / 2$	$\sqrt{3} / 2$	$1 / \sqrt{3}$

Solution Here 62° is close to 60° which is $\pi / 3$ radians, and we know $\cos (\pi / 3)=1 / 2$. Letting $f(x)=\cos x$, for x near $\pi / 3, f(x) \approx f(\pi / 3)+f^{\prime}(\pi / 3)(x-\pi / 3)$. Since $62^{\circ}=62 \pi / 180$ radians and $f^{\prime}(x)=-\sin x$, this gives

$$
\begin{aligned}
\cos 62^{\circ} & \approx 1 / 2-\sin (\pi / 3)(62 \pi / 180-\pi / 3) \\
& =1 / 2-(\sqrt{3} / 2)(\pi / 90) \\
& \doteq 0.470
\end{aligned}
$$

4. Use a tangent line approximation to estimate $\sqrt[4]{15}$ to three decimal places.

Solution 15 is near 16 where we know $\sqrt[4]{16}=2$ exactly. Letting $f(x)=\sqrt[4]{x}$, we have for x near 16 , $f(x) \approx f(16)+f^{\prime}(16)(x-16)$. That is, $\sqrt[4]{x} \approx 2+(1 / 32)(x-16)$. Thus

$$
\begin{aligned}
\sqrt[4]{x} & \approx 2+(1 / 32)(15-16) \\
& =63 / 32 \\
& \doteq 1.969 .
\end{aligned}
$$

5. Define y implicitly as a function of x via $x^{2 / 3}+y^{2 / 3}=5$. Use a tangent line approximation at $(8,1)$ to estimate the value of y when $x=7$.

Solution First find the equation of the tangent line to the curve at $(8,1)$ and then substitute $x=7$. Differentiating implicity with respect to x we find

$$
\frac{2}{3} x^{-1 / 3}+\frac{2}{3} y^{-1 / 3} y^{\prime}=0
$$

and substituting $(x, y)=(8,1)$ yields $y^{\prime}=-1 / 2$. Thus the equation of the tangent line is

$$
y=1-\frac{1}{2}(x-8)
$$

and substituting $x=7$ we find $y=3 / 2$. That is, $(7,3 / 2)$ is the point on the tangent line. Thus the point on the curve with x coordinate $x=7$ has corresponding y coordinate $y \approx 3 / 2$.
6. Suppose $f(x)$ is a differentiable function whose graph passes through the points $(-1,4)$ and $(1,7)$. The estimate $f(-0.8) \approx 5$ is obtained using a linear approximation about $x=-1$. Using this information, find $\left.\frac{d}{d x}(f(x))^{2}\right|_{x=-1}$.
Solution This problem was made more difficult by adding extra information which is not needed for the solution: the point $(1,7)$ plays no part. First, note that since $(-1,4)$ is on the graph of $f(x)$, $f(-1)=4$. For x near $-1, f(x) \approx f(-1)+f^{\prime}(-1)(x+1)$. Using this linear approximation, the estimate $f(-0.8) \approx 5$ was made; that is

$$
5=4+f^{\prime}(-1)(-0.8+1)
$$

So that $f^{\prime}(-1)=5$. Now do the derivative, remembering the chain rule:

$$
\begin{aligned}
\left.\frac{d}{d x}(f(x))^{2}\right|_{x=-1} & =\left.2 f(x) f^{\prime}(x)\right|_{x=-1} \\
& =2(4)(5) \\
& =40
\end{aligned}
$$

7. The profit $P(q)$ from producing q units of goods is given by

$$
P(q)=396 q-2.2 q^{2}+k
$$

for some constant k. Using a linear approximation about $q=80$ we find $P(81) \approx 17244$. What is k ?
Solution For q near $80, P(q) \approx P(80)+P^{\prime}(80)(q-80)$. Using this approximation, $P(81) \approx 17244$, so that

$$
\begin{aligned}
& 17244=P(80)+P^{\prime}(80)(q-80) \\
& 17244=\left[396(80)-2.2(80)^{2}+k\right]+[396-4.4(80)](1)
\end{aligned}
$$

where in this last equation the first expression in square brackets is $P(80)$ and the second expression in square brackets is $P^{\prime}(80)$. Solving this last equation for k gives $k=-400$ (note the original answers had $k=400$ which is incorrect).

