## Review questions for Math 151 Final Exam

## November 2005

Q1. Simplify:
(a) $\frac{3}{4}-\frac{7}{12}+\frac{3}{8}-\frac{5}{6}$
(b) $\frac{q}{r}+\frac{r}{p}-\frac{p}{q r}$
(c) $\frac{1}{x}\left(\frac{1}{z}-\frac{1}{y}\right)-\frac{1}{z}\left(\frac{1}{x}-\frac{1}{y}\right)$
(d) $\frac{\left(125 a^{3} b^{3}\right)^{\left(\frac{2}{3}\right)}}{(25 a b)^{\left(\frac{1}{2}\right)}}$

Q2. Simplify using only positive exponents.
(a) $\left(x^{(-1)}+y^{(-1))^{(-1)}}\right.$
(b) $\frac{\left(x^{3} y^{(-2)}\right)^{6}}{\left(y^{(-5)} x^{(-2)}\right)^{(-3)}}$
(c) $\frac{v^{(-3)}-u^{(-3)}}{v^{(-2)}-u^{(-2)}}$.

Q3. (a) Evaluate the following expression and leave your answer in scientific notation and rounded to 3 significant digits.

$$
\frac{2.58 \cdot 10^{12}}{3.145 \cdot 10^{(-7)}-3.52 \cdot 10^{(-8)}}
$$

(b) After a $55 \%$ reduction in price Hannah's new skates cost $\$ 108$. What was the original price?

Q4. Solve for $x$.
(a) $\frac{1}{6} x+\frac{1}{3}=3 x-\frac{1}{4}$
(b) $2 x^{2}+9 x-5=0$
(c) $x^{2}+4 x-9=0$
(d) $\frac{x}{\sqrt{16-x^{2}}}=1$
(e) $\frac{3}{x}-\frac{3}{x+2}=2$
(f) $(\sqrt{x}+2)^{3}-64=0$.

Q5. (a) Find the equation of the line that passes through the points $(-1,2)$ and $(7,-2)$.
Give the equation of the line in slope-intercept form.
(b) Find the equation of the line that passes through the point $(-5,3)$ and is perpendicular to the line $5 x-2 y=7$.

Q6. Sketch the graphs given by the following equations. Indicate clearly the location of any intercepts with the axes and of any asymptotes for the graph.
(a) $y=-2(x-2)^{2}+2$
(b) $y=\frac{1}{(x+1)^{2}}+4$

Q7. Solve the following pairs of simultaneous equations to find the coordinates of the points of intersection of the corresponding graphs.
(a) $\left\{\begin{array}{c}x^{2}+y^{2}=5 \\ x y=2\end{array}\right.$
(b) $\left\{\begin{array}{c}x^{2}-2 x y+y^{2}=1 \\ x+y=1\end{array}\right.$

Q8. Solve the inequalities and, in each case, give the solution set in interval notation.
(a) $\frac{3}{4}-\frac{2}{5} x>1-\frac{1}{2} x$
(b) $|4 x-3| \geq 9$
(c) $3 x^{2}-8 x>3$
(d) $\left|x^{2}-5\right| \leq 4$
(e) $\frac{2 x-1}{x+2} \geq 2$
(f) $\left|\frac{3 x+1}{x}\right|<2$

Q9. (a) Given $\mathrm{f}(x)=2 x^{2}-3 x+5$ and $\mathrm{g}(x)=\frac{1}{x-4}$ find $(f \circ \mathrm{~g})(x)$ and $(g \circ \mathrm{f})(x)$.
(b) Find two functions $f$ and $g$ such that $\left(\mathrm{f}_{\mathrm{o}} \mathrm{g}\right)(x)=\frac{1}{\sqrt{x^{2}+3 x}}$.

Q10. The functions f , g and h are defined by $\mathrm{f}(x)=\frac{x-2}{x+1}, \mathrm{~g}(x)=4+x^{2}$ and $\mathrm{h}(x)=\sqrt{13-x}$.
(a) Say whether the function $g$ has an inverse and explain why or why not?
(b) Find the inverse function $f^{(-1)}$ of $f$.
(c) Find $(\mathrm{h} \circ \mathrm{g})(x)$ and give the domain of $\mathrm{h} \circ \mathrm{g}$.

Q11. (a) Given $\mathrm{f}(x)=\sqrt{x+1}-2$, find $\mathrm{f}^{(-1)}(x)$. Sketch the graphs of f and $\mathrm{f}^{(-1)}$. What is the domain of $\mathrm{f}^{(-1)}$ ?
(b) Given $\mathrm{f}(x)=x^{5}+1$, find $\mathrm{f}^{(-1)}(x)$. Sketch the graphs of f and $\mathrm{f}^{(-1)}$.

Q12. Factor completely: (a) $24 x^{4}+81 x$ (b) $a^{6}-64 b^{6}$ (c) $s^{6}-7 s^{3}-8$ (d) $x^{3}+x^{2}-10 x+8$
(e) $x^{4}-x^{3}+8 x-8$ (f) $x^{5}+x^{4}-8 x^{3}-8 x^{2}-9 x-9$

Q13. Simplify and factor $x^{3}(x-2)^{\left(\frac{5}{3}\right)}-x^{4}(x-2)^{\left(-\frac{1}{3}\right)}$, leaving your answer with only positive exponents.

Q14. Find an alternative expression for $\frac{x}{1-\sqrt{1-x^{2}}}$ by rationalizing the denominator.
Q15. Solve for $x$. (a) $5^{(2 x+5)}=\frac{1}{125} \quad$ (b) $4^{(5 x+1)}=8^{(2 x-1)}$ (c) $7^{(x+1)}=35$ (Give your answer to 3 significant digits.)
$\begin{array}{ll}\text { (d) } 2 \log _{2} x-\log _{2}(3 x-8)=2 & \text { (e) } \log _{10}(x+5)-\log _{10} 3=\log _{10} 2-\log _{10} x\end{array}$
Q16. Evaluate $\log _{2} 19$ to four decimal places.
Q17. Simplify: (a) $\frac{\mathbf{e}^{(3 x)}-1}{\mathbf{e}^{(2 x)}-1}$
(b) $x^{2} \mathbf{e}^{\left(2 \ln \left(\frac{1}{\sqrt{x}}\right)\right)}+\ln \left(\mathbf{e}^{(2 x)}\right)$.

Q18. (a) Given $\mathrm{f}(x)=\ln (x-1)$, find $\mathrm{f}^{(-1)}(x)$. Sketch the graphs of f and $\mathrm{f}^{(-1)}$.
(b) Given $\mathrm{f}(x)=\mathbf{e}^{(-x+1)}+2$, find $\mathrm{f}^{(-1)}(x)$. Sketch the graphs of f and $\mathrm{f}^{(-1)}$.

Q19. A rectangular field of area 1600 square metres next to a river is to be subdivided into four congruent rectangular pens as shown in the diagram. If the length of each pen is $x$ metres, express the length of the fencing used in terms of $x$.


Q20. If the perimeter of a rectangular flag is 34 in . and the length of a diagonal is 13 in ., find the length and height of the flag.

## Solutions.

Note: The symbol $\Leftrightarrow>$ means "is equivalent to" while the symbol => means "implies".
Q1. (a) $-\frac{7}{24} \quad$ (b) $\frac{q}{r}+\frac{r}{p}-\frac{p}{q r}=\frac{p q^{2}+q r^{2}-p^{2}}{p q r}$
(c) $\frac{\frac{1}{z}-\frac{1}{y}}{x}-\frac{\frac{1}{x}-\frac{1}{y}}{z}=\frac{\left(\frac{y-z}{y z}\right)}{x}-\frac{\left(\frac{y-x}{x y}\right)}{z}=\frac{y-z}{x y z}-\frac{y-x}{x y z}=\frac{(y-z)-(y-x)}{x y z}=\frac{y-z-y+x}{x y z}=\frac{x-z}{x y z}$
(d) $\frac{\left(125 a^{3} b^{3}\right)^{\left(\frac{2}{3}\right)}}{(25 a b)^{\left(\frac{1}{2}\right)}}=\frac{25 a^{2} b^{2}}{5 a^{\left(\frac{1}{2}\right)} b^{\left(\frac{1}{2}\right)}}=5 a^{\left(\frac{3}{2}\right)} b^{\left(\frac{3}{2}\right)}=5 a \sqrt{a} b \sqrt{b}=5 a b \sqrt{a b}$.

Q2. (a) $\left(x^{(-1)}+y^{(-1)}\right)^{(-1)}=\frac{1}{\frac{1}{x}+\frac{1}{y}}=\frac{1}{\left(\frac{y+x}{x y}\right)}=\frac{x y}{x+y} \quad$ (b) $\frac{\left(x^{3} y^{(-2)}\right)^{6}}{\left(y^{(-5)} x^{(-2)}\right)^{(-3)}}=\frac{x^{18} y^{(-12)}}{y^{15} x^{6}}=x^{12} y^{(-27)}=\frac{x^{12}}{y^{27}}$.
(c) $\frac{v^{(-3)}+u^{(-3)}}{v^{(-2)}-u^{(-2)}}=\frac{\frac{1}{v^{3}}+\frac{1}{u^{3}}}{\frac{1}{v^{2}}-\frac{1}{u^{2}}}=\frac{\left(\frac{u^{3}+v^{3}}{u^{3} v^{3}}\right)}{\left(\frac{u^{2}-v^{2}}{u^{2} v^{2}}\right)}=\left(\frac{u^{3}+v^{3}}{u^{3} v^{3}}\right)\left(\frac{u^{2} v^{2}}{u^{2}-v^{2}}\right)=\frac{(u+v)\left(u^{2}-u v+v^{2}\right)}{u v(u-v)(u+v)}=\frac{u^{2}-u v+v^{2}}{u v(u-v)}$.

Q3. (a) $\frac{2.58 \cdot 10^{12}}{3 \cdot 14 \cdot 10^{(-7)}-3 \cdot 52 \cdot 10^{(-8)}}=\frac{2 \cdot 58 \cdot 10^{12}}{31 \cdot 4 \cdot 10^{(-8)}-3 \cdot 52 \cdot 10^{(-8)}}=\frac{2 \cdot 58 \cdot 10^{12}}{(31 \cdot 4-3 \cdot 52) \cdot 10^{(-8)}}=\frac{2.58}{31.4-3 \cdot 52} \cdot 10^{20}$

$$
=\frac{2.58}{27.88} \cdot 10^{20} \simeq 0.09254 \cdot 10^{20} \simeq 9.25 \cdot 10^{18} .
$$

(b) Let the original price be $x$ dollars. Then $\frac{45}{100} x=108$. Hence $x=\frac{108.100}{45}=\frac{108.100}{9.5}=12 \cdot 20=240$.

The original price was $\$ 240$.
Q4. (a) $\frac{1}{6} x+\frac{1}{3}=3 x-\frac{1}{4} \Leftrightarrow 2 x+4=36 x-3 \Leftrightarrow 7=34 x \Leftrightarrow x=\frac{7}{34}$.
Note: The first step follows on multiplying both sides of the equation by 12 , which is the LCM of the denominators 6,3 and 4 .
(b) $2 x^{2}+9 x-5=0 \Leftrightarrow(2 x-1)(x+5)=0 \Leftrightarrow x=\frac{1}{2}$ or $x=-5$.
(c) $x^{2}+4 x-9=0 \Leftrightarrow x=\frac{-4+/-\sqrt{16-(-36)}}{2}=\frac{-4+/-\sqrt{52}}{2}=\frac{-4+/-2 \sqrt{13}}{2}=-2 \pm \sqrt{13}$.
(d) $\frac{x}{\sqrt{16-x^{2}}}=1 \Leftrightarrow x=\sqrt{16-x^{2}} \Rightarrow x^{2}=16-x^{2} \Leftrightarrow 2 x^{2}=16 \Leftrightarrow x^{2}=8 \Leftrightarrow x= \pm 2 \sqrt{2}$.

Since squaring both sides of an equation may introduce extraneous solutions, the values obtained in the last step should be checked in the original equation. The only solution is $x=2 \sqrt{2}$.
(e) $\frac{3}{x}-\frac{3}{x+2}=2 \Leftrightarrow \frac{(3 x+6)-3 x}{x(x+2)}=2 \Leftrightarrow \frac{6}{x(x+2)}=2 \Leftrightarrow 6=2 x(x+2) \Leftrightarrow 3=x(x+2)$ $\Leftrightarrow 3=x^{2}+2 x \Leftrightarrow 0=x^{2}+2 x-3 \Leftrightarrow(x-1)(x+3)=0 \Leftrightarrow x=1$ or $x=-3$.
(f) $(\sqrt{x}+2)^{3}-64=0 \Leftrightarrow(f)(\sqrt{x}+2)^{3}=64 \Leftrightarrow \sqrt{x}+2=4 \Leftrightarrow \sqrt{x}=2 \Leftrightarrow x=4$.

Q5. (a) The line that passes through the points $(-1,2)$ and $(7,-2)$ has slope

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-2}{7-(-1)}=\frac{-4}{8}=-\frac{1}{2} .
$$

Its equation can be found by using the point-slope form for the equation of a line:

$$
y-y_{0}=m\left(x-x_{0}\right)----- \text { (i), }
$$

with $m=\frac{1}{2}$ and $\left(x_{0}, y_{0}\right)$ taken to be the point $(-1,2)$.
This gives:

$$
y-2=-\frac{1}{2}(x-(-1)) \Leftrightarrow y-2=-\frac{1}{2}(x+1) \Leftrightarrow y-2=-\frac{1}{2} x-\frac{1}{2} \Leftrightarrow y=-\frac{1}{2} x-\frac{1}{2}+2 \Leftrightarrow y=-\frac{1}{2} x+\frac{3}{2} .
$$

(b) The equation $5 x-2 y=7$ can be written in the form $y=\frac{5}{2} x-\frac{7}{2}$. Hence this line has slope $m=\frac{5}{2}$.

The slope of a perpendicular line is $-\frac{1}{m}=-\frac{2}{5}$. The perpendicular line passing through $(-5,3)$ has equation:

$$
y-3=-\frac{2}{5}(x+5) \Leftrightarrow y-3=-\frac{2}{5} x-2 \Leftrightarrow y=-\frac{2}{5} x+1 .
$$

Q6. (a) The graph given by the equation $y=-2(x-2)^{2}+2$ is obtained by shifting the graph of $y=-2 x^{2}$ a distance of 2 units to the right and 2 units up. The $x$ intercepts are where $x=1$ and $x=3$. The $y$ intercept is where $y=-6$.
(b) The graph given by the equation $y=\frac{1}{(x+1)^{2}}+4$ is obtained by shifting the graph of $y=\frac{1}{x^{2}}$ a distance of 1 units to the left and 4 units up. There are no $x$ intercepts. The $y$ intercept is where $y=5$.
The line $y=4$ is a horizontal asymptote and the line $x=-1$ is a vertical asymptote.

(a)

(b)

Q7. (a)

$$
\begin{array}{r}
x^{2}+y^{2}=5------(i \\
x y=2 \text {------ (ii) }
\end{array}
$$

Solving (ii) for $y$ gives

$$
y=\frac{2}{x}------(\text { (iii) }
$$

Substituting for $y$ from (iii) in (i) gives:

$$
x^{2}+\frac{4}{x^{2}}=5 \Leftrightarrow x^{4}+4=5 x^{2} \Leftrightarrow x^{4}-5 x^{2}+4=0 \Leftrightarrow\left(x^{2}-4\right)\left(x^{2}-1\right)=0 \Leftrightarrow x= \pm 2 \text { or } x= \pm 1 .
$$

There are 4 solutions: $(x=1$ and $y=2),(x=-1$ and $y=-2),(x=2$ and $y=1),(x=-2$ and $y=-1)$.
The graphs meet at the points $(1,2),(-1,-2),(2,1)$ and $(-2,-1)$.

(b)

$$
\begin{array}{r}
x^{2}-2 x y+y^{2}=1  \tag{i}\\
x+y=1
\end{array}
$$

Solving (ii) for $y$ gives

$$
y=1-x--\cdots--- \text { (iii) }
$$

$$
x^{2}-2 x y+y^{2}=1 \Leftrightarrow(x-y)^{2}=1 \Leftrightarrow x-y= \pm 1 \Leftrightarrow y=x \pm 1 \text {. }
$$

The last equation together with (iii) gives:

$$
1-x=x \pm 1 \Leftrightarrow 1 \pm 1=2 x \Leftrightarrow x=0 \text { or } x=1 .
$$

One solution is $x=0$ and $y=1$, and another solution is $x=1, y=0$. The two graphs meet at the points $(0,1)$ and $(1,0)$. Note: The graph of (i) is the pair of straight lines $y=x+1$ and $y=x-1$.

Q8. (a) $\frac{3}{4}-\frac{2}{5} x>1-\frac{1}{2} x \Leftrightarrow 15-8 x>20-10 x \Leftrightarrow 2 x>5 \Leftrightarrow x>\frac{5}{2}$. The solution set is: $\left(\frac{5}{2}, \infty\right)$
(b) $|4 x-3| \geq 9 \Leftrightarrow 4 x-3 \leq-9$ or $4 x-3 \geq 9 \Leftrightarrow 4 x \leq-6$ or $4 x \geq 12 \Leftrightarrow x \leq-\frac{3}{2}$ or $x \geq 3$.

The solution set is: $\left(-\infty,-\frac{3}{2}\right] \cup[3, \infty)$.
(c) $3 x^{2}-8 x>3 \Leftrightarrow 3 x^{2}-8 x-3>0 \Leftrightarrow(3 x+1)(x-3)>0$.

The last sign chart shows that $(3 x+1)(x-3)>0$ exactly when $x<-\frac{1}{3}$ or $x>3$.
The solution set of the inequality $3 x^{2}-8 x>3$ is $\left(-\infty,-\frac{1}{3}\right) \cup(3, \infty)$.

$$
\begin{aligned}
& (3 x+1)-----0+++++++++++++++
\end{aligned}
$$

$$
\begin{aligned}
& (3 x+1)(x-3)
\end{aligned}
$$

(d) $\left|x^{2}-5\right| \leq 4 \Leftrightarrow-4 \leq x^{2}-5 \leq 4 \Leftrightarrow 1 \leq x^{2} \leq 9$.

When $x \geq 0,1 \leq x^{2} \leq 9$ is equivalent to $1 \leq x \leq 3$. When $x<0, \quad 1 \leq x^{2} \leq 9$ is equivalent to $-3 \leq x \leq-1$.
The solution set is: $[-3,-1] \cup[1,3]$.
(e) $\frac{2 x-1}{x+2} \geq 2 \Leftrightarrow \frac{2 x-1}{x+2}-2 \geq 0 \Leftrightarrow \frac{2 x-1-2(x+2)}{x+2} \geq 0 \Leftrightarrow \frac{5}{x+2} \geq 0 \Leftrightarrow \frac{1}{x+2} \geq 0 \Leftrightarrow x+2 \geq 0 \Leftrightarrow x \geq-2$.

The solution set is: $[-2, \infty)$.
(f) $\left|\frac{3 x+1}{x}\right|<2 \Leftrightarrow-2<\frac{3 x+1}{x}<2 \Leftrightarrow-2<3+\frac{1}{x}<2 \Leftrightarrow-5<\frac{1}{x}<-1$.

The last (double) inequality implies that $x$ is negative. In general, if $a$ and $b$ are both positive or both negative, $a<b \ll>\frac{1}{a}>\frac{1}{b}$.
Hence $-5<\frac{1}{x}<-1 \Leftrightarrow-1<x<-\frac{1}{5}$. The solution set is: $\left(-1,-\frac{1}{5}\right)$
Q9. (a) Given $\mathrm{f}(x)=2 x^{2}-3 x+5$ and $\mathrm{g}(x)=\frac{1}{x-4}$ then
$(f \circ g)(x)=\mathrm{f}(\mathrm{g}(x))=\mathrm{f}\left(\frac{1}{x-4}\right)=2\left(\frac{1}{x-4}\right)^{2}-3\left(\frac{1}{x-4}\right)+5=\frac{2}{(x-4)^{2}}-\frac{3}{x-4}+5$.
$(\mathrm{g} \circ \mathrm{f})(x)=\mathrm{g}(\mathrm{f}(x))=\mathrm{g}\left(2 x^{2}-3 x+5\right)=\frac{1}{\left(2 x^{2}-3 x+5\right)-4}=\frac{1}{2 x^{2}-3 x+1}$.
(b) If $\mathrm{h}(x)=\frac{1}{\sqrt{x^{2}+3 x}}$, let $\mathrm{g}(x)=x^{2}+3 x$ and $\mathrm{f}(x)=\frac{1}{\sqrt{x}}$. Then $(\mathrm{g} \circ \mathrm{f})(x)=\mathrm{h}(x)$.

Q10. Given $\mathrm{f}(x)=\frac{x-2}{x+1}, \mathrm{~g}(x)=4+x^{2}$ and $\mathrm{h}(x)=\sqrt{13-x}$.
(a) The function g does not have an inverse because it is not one-to-one. For example, g associates the two distinct $x$ values $x=-2$ and $x=2$ with the value $y=8$. (The graph of g fails the horizontal line test.)
(b) $y=\frac{x-2}{x+1} \Rightarrow x y+y=x-2 \Rightarrow y+2=x-x y \Rightarrow y+2=x(1-y) \Rightarrow x=\frac{y+2}{1-y}$.

Hence $\mathrm{f}^{(-1)}(y)=\frac{y+2}{1-y}$ so that $\mathrm{f}^{(-1)}(x)=\frac{x+2}{1-x}$.
(c) $(\mathrm{hog})(x)=\mathrm{h}(\mathrm{g}(x))=\mathrm{h}\left(4+x^{2}\right)=\sqrt{13-\left(4+x^{2}\right)}=\sqrt{9-x^{2}}$.

The domain of $\mathrm{h}_{\mathrm{o}} \mathrm{g}$ is $\left\{x \mid 9-x^{2} \geq 0\right\}$. Now $9-x^{2} \geq 0 \Leftrightarrow x^{2} \leq 9 \Leftrightarrow-3 \leq x \leq 3$.
Hence the domain of $\mathrm{hog}_{\mathrm{g}}$ is the interval $[-3,3]$.
Q11. (a) Given $\mathrm{f}(x)=\sqrt{x+1}-2$, we wish to find $\mathrm{f}^{(-1)}(x)$.

$$
y=\sqrt{x+1}-2 \Leftrightarrow y+2=\sqrt{x+1} \Leftrightarrow(y+2)^{2}=x+1 \Leftrightarrow x=(y+2)^{2}-1
$$

Hence

$$
\mathrm{f}^{(-1)}(y)=(y+2)^{2}-1
$$

so that

$$
\begin{equation*}
\mathrm{f}^{(-1)}(x)=(x+2)^{2}-1 \tag{i}
\end{equation*}
$$



In the previous picture $\mathrm{g}=\mathrm{f}^{(-1)}$.

The domain of $f^{(-1)}$ is the same as the range of $f$. Hence the domain of $f^{(-1)}$ is $[-2, \infty)$.
Note: The formula, (i) should really be qualified with the condition that $x \geq-2$. Thus the complete formula for $\mathrm{f}^{(-1)}$ is:

$$
\mathrm{f}^{(-1)}(x)=(x+2)^{2}-1, x \geq-2 .
$$

(b) Given $\mathrm{f}(x)=x^{5}+1$, we wish to find $\mathrm{f}^{(-1)}(x)$.

$$
y=x^{5}+1 \Leftrightarrow y-1=x^{5} \Leftrightarrow x=5 \sqrt{y-1}
$$

Hence

$$
\mathrm{f}^{(-1)}(y)=5 \sqrt{y-1},
$$

so that

$$
\mathrm{f}^{(-1)}(x)=5 \sqrt{x-1},---\cdots--(\mathrm{i})
$$



In the previous picture $\mathrm{g}=\mathrm{f}^{(-1)}$.
Q12. (a) $24 x^{4}+81 x=3 x\left(8 x^{3}+27\right)=3 x(2 x+3)\left(4 x^{2}-6 x+9\right)$
(b) $a^{6}-64 b^{6}=\left(a^{3}\right)^{2}-\left(8 b^{3}\right)^{2}=\left(a^{3}-8 b^{3}\right)\left(a^{3}+8 b^{3}\right)=(a-2 b)\left(a^{2}+2 a b+4 b^{2}\right)(a+2 b)\left(a^{2}-2 a b+4 b^{2}\right)$
(c) $s^{6}-7 s^{3}-8=\left(s^{3}-8\right)\left(s^{3}+1\right)=(s-2)\left(s^{2}+2 s+4\right)(s+1)\left(s^{2}-s+1\right)$
(d) Let $\mathrm{P}(x)=x^{3}+x^{2}-10 x+8$. Then $\mathrm{P}(1)=0$, so, by the Factor Theorem, $x-1$ is a factor of $\mathrm{P}(x)$.

$$
x^{2}+2 x-8
$$

$$
x - 1 \longdiv { | x ^ { 3 } + x ^ { 2 } - 1 0 x + 8 }
$$

$$
x^{3}-x^{2}
$$

$$
2 x^{2}-10 x
$$

$$
2 x^{2}-2 x
$$

$$
-8 x+8
$$

$$
-8 x+8
$$

0
$\mathrm{P}(x)=(x-1)\left(x^{2}+2 x-8\right)=(x-1)(x+4)(x-2)$
(e) $x^{4}-x^{3}+8 x-8=x^{3}(x-1)+8(x-1)=\left(x^{3}+8\right)(x-1)=(x+2)\left(x^{2}-2 x+4\right)(x-1)$
(f) $x^{5}+x^{4}-8 x^{3}-8 x^{2}-9 x-9=x^{4}(x+1)-8 x^{2}(x+1)-9(x+1)=\left(x^{4}-8 x^{2}-9\right)(x+1)$

$$
=\left(x^{2}-9\right)\left(x^{2}+1\right)(x+1)=(x-3)(x+3)\left(x^{2}+1\right)(x+1)
$$

Q13. $x^{3}(x-2)^{\left(\frac{5}{3}\right)}-x^{4}(x-2)^{\left(-\frac{1}{3}\right)}=x^{3}\left((x-2)^{\left(\frac{5}{3}\right)}-\frac{x}{(x-2)^{\left(\frac{1}{3}\right)}}\right)=\frac{x^{3}\left((x-2)^{2}-x\right)}{(x-2)^{\left(\frac{1}{3}\right)}}=\frac{x^{3}\left(x^{2}-4 x+4-x\right)}{(x-2)^{\left(\frac{1}{3}\right)}}$

$$
=\frac{x^{3}\left(x^{2}-5 x+4\right)}{(x-2)^{\left(\frac{1}{3}\right)}}=\frac{x^{3}(x-1)(x-4)}{(x-2)^{\left(\frac{1}{3}\right)}}
$$

Q14. $\frac{x}{1-\sqrt{1-x^{2}}}=\frac{x}{1-\sqrt{1-x^{2}}} \cdot \frac{1+\sqrt{1-x^{2}}}{1+\sqrt{1-x^{2}}}=\frac{x\left(1+\sqrt{1-x^{2}}\right)}{1-\left(1-x^{2}\right)}=\frac{x\left(1+\sqrt{1-x^{2}}\right)}{x^{2}}=\frac{1+\sqrt{1-x^{2}}}{x}$

Q15. (a) $5^{(2 x+5)}=\frac{1}{125} \Leftrightarrow 5^{(2 x+5)}=5^{(-3)} \Leftrightarrow 2 x+5=-3 \Leftrightarrow 2 x=-8 \Leftrightarrow x=-4$.
(b) $4^{(5 x+1)}=8^{(2 x-1)} \Leftrightarrow\left(2^{2}\right)^{(5 x+1)}=\left(2^{3}\right)^{(2 x-1)} \Leftrightarrow 2^{(10 x+2)}=2^{(6 x-3)} \Leftrightarrow 10 x+2=6 x-3 \Leftrightarrow 4 x=-5 \Leftrightarrow x=-\frac{5}{4}$.
(c) $7^{(x+1)}=35 \Leftrightarrow \log _{10}\left(7^{(x+1)}\right)=\log _{10} 35 \Leftrightarrow(x+1) \log _{10}(7)=\log _{10} 35 \Leftrightarrow x+1=\frac{\log _{10} 35}{\log _{10} 7}$
$\Leftrightarrow x=\frac{\log _{10} 35}{\log _{10} 7}-1=\frac{\log _{10} 5+\log _{10} 7}{\log _{10} 7}-1=\frac{\log _{10} 5}{\log _{10} 7} \simeq \frac{0.6990}{0.8451} \simeq 0.827$.
(d) $2 \log _{2} x-\log _{2}(3 x-8)=2 \Rightarrow \log _{2}\left(x^{2}\right)-\log _{2}(3 x-8)=2 \Rightarrow \log _{2}\left(\frac{x^{2}}{3 x-8}\right)=2 \Leftrightarrow \frac{x^{2}}{3 x-8}=4 \Leftrightarrow x^{2}=12 x-32$ $\Leftrightarrow x^{2}-12 x+32=0 \Leftrightarrow(x-4)(x-8)=0 \Leftrightarrow x=4$ or $x=8$
$x=4$ and $x=8$ are both solutions. Both of these values check in the original equation.
(e) $\log _{10}(x+5)-\log _{10} 3=\log _{10} 2-\log _{10} x \Leftrightarrow \log _{10}\left(\frac{x+5}{3}\right)=\log _{10}\left(\frac{2}{x}\right)=>\frac{x+5}{3}=\frac{2}{x} \Leftrightarrow x^{2}+5 x=6 \Leftrightarrow x^{2}+5 x-6=0$ $\Leftrightarrow(x+6)(x-1)=0 \Leftrightarrow x=-6$ or $x=1$. Since $\log _{10}(-6)$ does not exist, the only solution is $x=1$. This value checks in the original equation.

Q16. $\log _{2} 19=\frac{\log _{10} 19}{\log _{10} 2} \simeq \frac{1.278754}{0.3010300} \simeq 4.2479$
Q17. (a) $\frac{\mathbf{e}^{(3 x)}-1}{\mathbf{e}^{(2 x)}-1}=\frac{\left(\mathbf{e}^{x}-1\right)\left(\mathbf{e}^{(2 x)}+\mathbf{e}^{x}+1\right)}{\left(\mathbf{e}^{x}-1\right)\left(\mathbf{e}^{x}+1\right)}=\frac{\mathbf{e}^{(2 x)}+\mathbf{e}^{x}+1}{\mathbf{e}^{x}+1}$. Note: $\mathbf{e}^{(2 x)}=\left(\mathbf{e}^{x}\right)^{2}$ and $\mathbf{e}^{(\beta x)}=\left(\mathbf{e}^{x}\right)^{3}$.
(b) $x^{2} \mathbf{e}^{\left(2 \ln \left(\frac{1}{\sqrt{x}}\right)\right)}+\ln \left(\mathbf{e}^{(2 x)}\right)=x^{2} \mathbf{e}^{\left.\ln \left(\frac{1}{\sqrt{x}}\right)^{2}\right)}+\ln \left(\mathbf{e}^{(2 x)}\right)=x^{2} \mathbf{e}^{\ln \left(\frac{1}{x}\right)}+\ln \left(\mathbf{e}^{(2 x)}\right)=x^{2} \cdot \frac{1}{x}+2 x=x+2 x=3 x$, where $x>0$.

Q18. (a) Given $\mathrm{f}(x)=\ln (x-1)$, we wish to find $\mathrm{f}^{(-1)}(x)$.

$$
y=\ln (x-1) \Leftrightarrow x-1=\mathbf{e}^{y} \Leftrightarrow x=\mathbf{e}^{y}+1
$$

Hence

$$
\mathrm{f}^{(-1)}(y)=\mathbf{e}^{y}+1
$$

so that

$$
\mathrm{f}^{(-1)}(x)=\mathbf{e}^{x}+1,-\cdots-\cdots(\mathrm{i}) .
$$



In the previous picture $g=f^{(-1)}$.
(b) Given $\mathrm{f}(x)=\mathbf{e}^{(-x+1)}+2$, we wish to find $\mathrm{f}^{(-1)}(x)$.

$$
y=\mathbf{e}^{(-x+1)}+2 \Leftrightarrow y-2=\mathbf{e}^{(-x+1)} \Leftrightarrow \ln (y-2)=-x+1 \Leftrightarrow x=1-\ln (y-2)
$$

Hence

$$
\mathrm{f}^{(-1)}(y)=1-\ln (y-2)
$$

so that

$$
\mathrm{f}^{(-1)}(x)=1-\ln (x-2), \cdots-\cdots--(\mathrm{i}) .
$$



In the previous picture $\mathrm{g}=\mathrm{f}^{(-1)}$.
Note: $\mathrm{f}(x)=\mathbf{e}^{(-x+1)}+2=\mathbf{e}^{(-(x-1))}+2$, so the graph of f is obtained by shifting the graph of $y=\mathbf{e}^{(-x)}$ one unit to the right and 2 units up. The $y$ intercept is $\mathbf{e}+2 \simeq 4.72$.

Q19. Let the height of each of the four pens be $y$ metres. Since the area of each pen is $\frac{1600}{4}=400$ square metres, we have $x y=400$, so that $y=\frac{400}{x}$. Then the length of fencing needed is $4 x+6 y=4 x+6\left(\frac{400}{x}\right)=4 x+\frac{2400}{x}$ metres.

Q20. Let the length and height of the flag be $x$ in. and $y$ in. respectively.


Since the length of a diagonal is 13 in ., Pythagoras' Theorem gives

$$
x^{2}+y^{2}=169 \text {------ (i). }
$$

Since the perimeter is 34 in ., $2 x+2 y=34$, so that, $x+y=17$.
This gives

$$
y=17-x \text {------- (ii). }
$$

Using equation (ii) to substitute for $y$ in (i) gives:

$$
\begin{gathered}
x^{2}+(17-x)^{2}=169 \Leftrightarrow x^{2}+289-34 x+x^{2}=169 \Leftrightarrow 2 x^{2}-34 x+120=0 \Leftrightarrow x^{2}-17 x+60=0 \\
\Leftrightarrow>(x-5)(x-12)=0 \Leftrightarrow x=5 \text { or } x=12 .
\end{gathered}
$$

Ans: length $=12 \mathrm{in}$, height $=5 \mathrm{in}$. (assuming that the length is greater than the height) .

