Ex. 2.3A

- 3. (a) $A \cup \emptyset = A$ is true.
 - (b) A B = B A is false.

counterexample: $A = \{1, 2, 3\}, B = \{2, 3, 4\}, A - B = \{1\} \text{ but } B - A = \{4\}$

(c) $\overline{A \cap B} = \overline{A} \cap \overline{B}$ is false.

counterexample: $U = \{1, 2, 3, 4, \}, A = \{1, 3\}, B = \{3, 4\}$

$$\overline{A \cap B} = \overline{\{3\}} = \{1, 2, 4\} \text{ but } \overline{A} \cap \overline{B} = \{2, 4\} \cap \{1, 2\} = \{2\}$$

(d) $(A \cup B) - A = B$ is false.

counterexample: $A = \{1, 2, 3\}, B = \{3, 4\}$

$$(A \cup B) - A = \{1, 2, 3, 4\} - \{1, 2, 3\} = \{4\} \neq B$$

(e) $(A - B) \cup A = (A - B) \cup (B - A)$ is false. counterexample: $A = \{1, 2, 3\}, B = \{3, 4\}$

$$(A - B) \cup A = \{1, 2\} \cup \{1, 2, 3\} = \{1, 2, 3\}$$

 $(A - B) \cup (B - A) = \{1, 2\} \cup \{4\} = \{1, 2, 4\}$

 $(A \cap B) \cup (A \cap C)$ 5. (a)

(b)

- 7. (a) If $A \cap B = \emptyset$ then A B = A
 - (b) If $B = \emptyset$ then A B = A
 - (a) If B = U then $A B = \emptyset$
- 9. (a) B A or $\overline{A} \cap B$
 - (b) $\overline{A \cup B}$ or $\overline{A} \cap \overline{B}$
 - (c) $(A \cap B) C$ or $A \cap B \cap \overline{C}$
- 11. (a) $A \cup (B \cap C) \neq (A \cup B) \cap C$ because the two Venn diagrams are not the same:

AU(BAC) includes all shorted region

 $(A \cup B) \cap C$

(AUB) AC is the region should by both sets

(b) $A - (B - C) \neq (A - B) - C$ because the two Venn diagrams are not the same:

$$A - (B - C)$$

$$(A-B)-C$$

18. Let B be the set of basketball players

V be the set of volleyball players

S be the set of soccer players

$$n(B) = 7$$
$$n(V) = 9$$

$$n(S) = 10$$

$$n(B \cap V \cap \overline{S}) = 1$$

$$n(B \cap S \cap \overline{V}) = 1$$

$$n(V \cap S \cap \overline{B}) = 2$$

$$n(B \cap V \cap S) = 2$$

we need to find $n(B \cup V \cup S)$.

From the Venn diagram, $n(B \cup V \cup S) = 3 + 1 + 2 + 1 + 4 + 2 + 5 = 18$

(a)
$$A \times B = \{(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)\}$$

(b)
$$B \times A = \{(a, x), (a, y), (b, x), (b, y), (c, x), (c, y)\}$$

(c)
$$A \times B \neq B \times A$$

28. (a) If
$$C \times D = \{(a, b), (a, c), (a, d), (a, e)\}$$
 then $C = \{a\}$ and $D = \{b, c, d, e\}$.

(b) If
$$C \times D = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\}$$
 then $C = \{1,2\}$ and $D = \{1,2,3\}$.

(c) If
$$C \times D = \{(0,1), (0,0), (1,1), (1,0)\}$$
 then $C = \{0,1\}$ and $D = \{0,1\}$.

Ex. 2.3B

$$\vartheta$$
. (a) $A \cap C$

(b)
$$(A \cup B) \cap C$$
 or $(A \cap C) \cup (B \cap C)$

(c)
$$(B \cup C) - A$$
 *different in first edition

12. (a) If
$$n(A \cup B) = 23$$
, $n(A \cap B) = 9$ and $n(B) = 12$ then $23 = n(A) + 12 - 9$ $n(A) = 20$

(b) If
$$n(A) = 9$$
, $n(B) = 13$ and $n(A \cap B) = 5$ then $n(A \cup B) = 9 + 13 - 5$ $n(A \cup B) = 17$

13. (a) $\overline{A \cap B} = \overline{A} \cup \overline{B}$ because both sets cover the same region in the Venn diagram as shown below:

 $\overline{A \cap B}$

ANB

Any shaded area is AUB

(b) Let $U = \{a, b, c, d, e, f, g\}$, $A = \{a, b, c, d\}$, $B = \{b, c, e, f\}$ then $\overline{A} = \{e, f, g\}$

 $\overline{B} = \{a, d, g\} \text{ and } A \cap B = \{b, c\}.$

Therefore,

$$\overline{A \cap B} = \{a, d, e, f, g\} \text{ and } \overline{A} \cup \overline{B} = \{a, d, e, f, g\}$$

so $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

- 18. (a) Regions (c), (f), (g). (k)
 - (b) Regions (b), (c), (d), (e), (f), (g).
 - (c) Regions (b), (e).
 - (d) Region (a) consists of all students who took algebra only and not the other two.
 - (e) Region (f) consists of all students who took biology and chemistry but not algebra.
 - (f) $(B \cap C) A$
 - (g) $C \mathbf{A}$
 - (h) $C (A \cup B)$

MC. 2.3

20. Total no. of combinations = no. of pairs of slacks \times no. of shirts \times no. of sweaters $= 3 \times 4 \times 5$ = 60