MC. 8.1

3. Let x be the original number and y be the answer, then

$$\frac{4x+16}{2} - 7 = y$$

Solving the equation for x, we get

$$\frac{4x+16}{2} = y+7$$

$$4x+16 = 2(y+7)$$

$$4x = 2(y+7) - 16$$

$$4x = 2y+14-16$$

$$4x = 2y - 2$$

$$x = \frac{2(y-1)}{4}$$

$$x = \frac{y - 1}{2}$$

Ans: Thus, to get the original number, take the answer, subtract 1 and divide by 2.

Ex. 8.2A

5. Let x be the number of student tickets sold, then

	student	$non ext{-}student$	total
no.ofstudents	x	812 - x	812
revenue	2x	3(812-x)	1912

Since the total revenue is \$1912, we must have

$$2x + 3(812 - x) = 1912$$

$$2x + 2436 - 3x = 1912$$

$$2436 - x = 1912$$

$$-x = -524$$

$$x = 524$$

Ans: 524 student tickets were sold

6. Let x be the amount received by the youngest, then

			J J O - J		
	oldest	middle	youngest	total	
	3x	x + 14000	x	486000	

Since the total is \$486000, we must have

$$3x + (x + 14000) + x = 486000$$

$$5x + 14000 = 486000$$

$$5x = 472000$$

$$x = 94400$$

Ans: The oldest child received \$283,200, the middle child received \$108,400 and the youngest received \$94,400.

4.

11. Let a be the shorter side of the field then the longer side would be b=2aSince the total amount of fencing is 1200 yard, we have

$$a + a + b = 1200$$

replacing b with 2a we get

$$a + a + 2a = 1200$$

$$4a = 1200$$

$$a = 300$$

Ans: The dimension of the rectangular field is $300 \text{ yd} \times 600 \text{ yd}$.

12. Let x be the smallest of the three consecutive terms in the arithmetic sequence, then

smallest	middle	largest	$sum\ of\ all\ three$
x	x+3	x+6	903

Since the sum of all three is 903, we must have

$$x + (x + 3) + (x + 6) = 903$$

$$3x + 9 = 903$$

$$3x = 894$$

$$x = 298$$

Ans: The three consecutive terms are 298, 301 and 304.

Ex. 2.2A

- 1. \overline{a} . $\{x \mid x \text{ is a letter in the word ASSESSMENT}\} = \{a, s, e, m, n, t\}$
 - b. $\{x \mid x \text{ is a natural number greater than } 20\} = \{21, 22, 23, 24, \dots\}$
- 2. a. $P = \{p, q, r, s\}$
 - b. $\{1, 2\} \subset \{1, 2, 3\}$
 - c. $\{0, 1\} \nsubseteq \{1, 2, 3\}$
- 3. a. $\{1, 2, 3, 4, 5\}$ and $\{m, n, o, p, q\}$ can be put into a one-to-one correspondence.
 - b. $\{a,\,b,\,c,\,d,\,\ldots,\,m\}$ and $\{1,\,2,\,3,\,4,\,\ldots,\,13\}$ can be put into a one-to-one correspondence.
 - c. $\{x \mid x \text{ is a letter in the word mathematics}\}\$ and $\{1, 2, 3, ..., 11\}$ cannot be put into a one-to-one correspondence because the first set only has 8 elements in it.
- 5. The number of one-to-one correspondences between $\{x, y, z, u, v\}$ and $\{1, 2, 3, 4, 5\}$
 - a. is $1 \times 4 \times 3 \times 2 \times 1 = 24$ if x must correspond to 5.
 - b. is $1 \times 1 \times 3 \times 2 \times 1 = 6$ if x must correspond to 5 and y to 1.
 - c. is $3 \times 2 \times 1 \times 2 \times 1 = 12$ if x, y, z must correspond to odd numbers.
- 7. a. $n(\{201, 202, 203, \dots, 1100\}) = 1100 200 = 900$
 - b. $n(\{1, 3, 5, \dots, 101\}) = \frac{102}{2} = 51$
 - c. $n(\{1, 2, 4, 8, 16, ..., 1024\}) = n(\{2^0, 2^1, 2^2, 2^3, ..., 2^{10}\}) = 11$ d. $n(\{x \mid x = k^3, k = 1, 2, 3, ..., 100\}) = 100$

```
11. If A = \{a, b, c, d, e\},\
```

- a. A has $2^5 = 32$ subsets.
- b. A has 32 1 = 31 proper subsets.
- c. Number of subsets containing a and e is $2^3 = 8$.

14. a.
$$0 \notin \emptyset$$

b.
$$1024 \in \{x \mid x = 2^n \text{ and } n \in \mathbb{N}\}\$$
because $1024 = 2^{10}$

c.
$$3002 \in \{x \mid x = 3n - 1 \text{ and } n \in \mathbb{N}\}$$
 because $3002 = 3(1001) - 1$

d.
$$\{1\} \notin \{1, 2\}$$

15. a.
$$0 \nsubseteq \emptyset$$

b.
$$1024 \nsubseteq \{x \mid x = 2^n \text{ and } n \in \mathbb{N}\}$$

c.
$$3002 \nsubseteq \{x \mid x = 3n - 1 \text{ and } n \in \mathbb{N}\}$$

d.
$$\{1\} \subseteq \{1, 2\}$$

16. a. Yes, if
$$A = B$$
 then $A \subseteq B$.

b. No, if
$$A \subseteq B$$
, it is not necessary that $A \subset B$, for example $A = \{1, 2\}$, $B = \{1, 2\}$.

c. Yes, if
$$A \subset B$$
 then $A \subseteq B$.

d. No, if
$$A \subseteq B$$
, it is not necessary that $A = B$, for example $A = \{1\}$, $B = \{1, 2\}$.

Extra question

 $\frac{1}{1}$ no. of ways to pick the first digit \times no. of ways to pick the second digit

$$=9\times9$$

$$= 81$$