CHEM 331

Problem Set #3: Substitutent Effects and LFERs

Submit answers to even numbered questions only. Due Wednesday, Mar. 16th

1. The structure of the herbicide *sulcotrion* has is shown below and is found to have a pK_a of 3.13. Draw the structure of the conjugate base and explain the unusual acidity of this 'carbon acid'.

- 2. Answer each of the following with reference to the corresponding substituent constants considering both inductive and resonance electronic contributions (σ_I and σ_R). Illustrate your answer showing resonance structures for substituted benzoic acids, where appropriate.
 - a) The σ_{meta} and σ_{para} values for the $-CO_2CH_3$ group are both positive with $\sigma_{para} > \sigma_{meta}$.
 - b) The values of σ_{meta} for the methoxy substituent (–OCH₃) is positive, whereas the values for σ_{para} is negative.
 - c) The picryl (2,4,6-trinitrophenyl) substituent, $-C_6H_2(NO_2)_3$ is relatively large with the ortho nitro groups sterically interfering with atoms in the ortho positions on an adjacent aromatic ring. Predict the sign and relative magnitude of σ_{meta} and σ_{para} for the picryl substituent.
- 3. Using the information in Table 1 and 2 (attached), estimate the p K_a values of the following compounds at 25°C and sketch a plot of the fractional abundance of each acid and conjugate base over a pH range of 0-14.
 - a) 3,4-dinitrophenol
 - b) 2,4-dichlorophenoxy acetic acid
 - c) the conjugate acid of para-methylaniline
- **4.** The p K_a values of m- and p-monosubstituted benzoic acids in 50% aqueous ethanol correlate with σ , and have a ρ value of 1.60. The p K_a of benzoic acid in this system is 5.71. The p K_a values of some 4-X-3,5-dimethylbenzoic acids in this solvent system are given below. Use these results to examine and comment on the applicability of additivity of σ values.

X	$N(CH_3)_2$	NH_2	Cl	Br	CN	COOCH ₃	NO_2
pKa	6.23	6.88	5.59	5.55	4.90	5.44	4.91

- - a) hydrolysis of substituted benzyl chlorides; $\rho = -4.45$

$$\begin{array}{c|c} CI & OH \\ \hline \\ & \\ X & \\ \end{array}$$

b) addition of cyanide ion to substituted benzaldehydes; $\rho = 2.55$

6. a) The solvolysis of substituted diphenylcarbinyl chlorides was studied in ethanol at 25°C. A plot of log k versus σ^+ was linear with a slope of -5.1. Suggest a mechanism consistent with this observation and provide an explanation of the ρ value in terms of the *Hammond postulate*.

b) The hydrolysis of a series of ethyl benzoates by hydroxide ion in 85% aqueous ethanol has been investigated. A Hammett plot of the second order rate constants (k_B) gave a reaction constant $\rho = 2.56$. Calculate how much faster ethyl 4-nitrobenzoate will undergo base catalyzed hydrolysis compared to ethyl benzoate under similar conditions.

$$O_2$$
N

- 7. The neutral hydrolysis of 2,4-dinitrophenyl acetate (2,4-DNPA) has a measured pseudo first order rate constant of $4.4 \times 10^{-5} \text{ s}^{-1}$ at $22.5 \,^{\circ}\text{C}$.
- a) If the reaction constant for a series of substituted phenyl acetates is determined to be $\rho = 0.87$, what is rate constant for the neutral hydrolysis of the unsubstituted phenyl acetate at this temperature.
- b) Suggest a substituted phenyl acetate that will have a hydrolysis half-life greater than one week.
- **8.** The base catalyzed hydrolysis of phenyl N-phenyl carbamates occurs by the elimination of PhO $^{-}$ group as the rate determining step. Estimate the second order rate constant, $k_{\rm B}$ for 3,4,5-trichlorophenyl N-phenyl carbamate at 25°C using the $k_{\rm B}$ values given in the Table below for other substituted phenyl N-phenyl carbamates and the Hammett relation.

X	$k_{\rm B}~({\rm M}^{\text{-}1}~{\rm s}^{\text{-}1})$	X	$k_{\rm B}~({ m M}^{\text{-1}}~{ m s}^{\text{-1}})$
p-CH₃	3.0×10^{1}	m-Cl	1.8×10^3
p-OCH ₃	2.5×10^{1}	m-NO ₂	1.3×10^4
p-Cl	4.2×10^2	p-NO ₂	2.7×10^{5}

Table 1: Hammett constants for some common substituents

Substituent	σ_{meta}	σ _{para}	σ-	$\sigma^{\scriptscriptstyle +}$	$\sigma_{o}^{phenols}$
CH ₃	-0.07	-0.17		-0.31	-0.13
Ph (C_6H_5)	0.06	0.01			
Cl	0.37	0.23		0.11	0.68
Br	0.39	0.23	0.26	0.15	0.70
I	0.35	0.18		0.13	0.63
OH	0.10	-0.37		-0.92	
OCH ₃	0.12	-0.27	-0.12	-0.78	0.0
NO_2	0.71	0.78	1.25	0.79	1.24
CN	0.56	0.66	0.89	0.66	
CO ₂ CH ₃	0.33	0.45	0.66		
OCOCH ₃	0.36	0.31			
NH_2	-0.16	-0.66		-1.3	
$N(CH_3)_2$	-0.15	-0.83			

Note: σ - and σ ⁺ apply to *para* substituted groups only

Table 2: Reaction and acidity constants for aromatic acids in water at 25°C

Acid	ρ	pK_{aH}
Benzoic acid	1.00	4.19
Phenol	2.25	9.92
Phenoxy acetic acid	0.30	3.17
2-chlorophenoxy acetic acid	0.30	3.05
Conjugate acid of aniline	2.89	4.63