AIR-WATER PARTITIONING: HENRY'S LAW

The transfer of a chemical compound between the atmosphere and bodies of water is one of the key processes affecting the transport of many organic compounds in the environment (1). This air-water distribution ratio (K_{aw}) is also referred to as the Henry's Law constant K_{H} . The Henry's Law constant K_{H} can be approximated as the ratio of a compound's abundance in the gas phase to that in the aqueous phase at equilibrium.

$$X_{(aq)}$$
 ==== $X_{(g)}$
 $K_{H} = \frac{P_{i}}{C_{w}} atm.L.mol^{-1}$

where P_i is the partial pressure of the gas phase of the chemical and C_w is its molar concentration in water. Note that Henry's Law constant can be defined for the reverse reaction, which can lead to confusion. Tabulated K_H values have been reported in units of Pa M⁻¹ and atm m³ mol⁻¹. Some texts define the reaction in the opposite direction, in which case the units appear as M atm⁻¹. K_{aw} (also referred to as K_H ') is defined in terms of a unitless ratio of concentrations. When in doubt, check the units!

Given that for most organic solutes of moderate or sparing solubility, the activity coefficient at infinite dilution in water is roughly equivalent to that in a saturated solution,

$$\gamma_w{}^\infty \sim \gamma_w{}^{sat}$$

we can approximate K_H by K_H^{sat} .

$$K_{H} \approx K_{H}^{sat} = \frac{P^{o}}{C_{w}^{sat}}$$

where P^o is for the liquid state (subcooled or superheated for solids and gases, respectively).

Since,

$$C_{w}^{sat} = \frac{1}{\gamma_{w}^{sat} \overline{V}_{H2O}}$$

we can also write;

 $K_{\rm H} = \overline{V}_{\rm H2O} \gamma_{\rm w}^{\rm sat} P^{\rm o}(L)$ [dimensions of pressure x volume x mols⁻¹]

It will also be convenient for us to express the Henry's Law constant as a dimensionless Kaw value, and

it can be shown that
$$K_{aw}$$
 (dimensionless) = $\frac{K_{H}}{RT}$

where the units used for R – the universal gas constant must be consistent with the units for K_H (i.e., if K_H is given in atm L mol⁻¹, then use R = 0.08206 L atm mol⁻¹ K⁻¹; if K_H is given in SI units of Pa m³ mol⁻¹, then use R = 8.314 Pa m³ mol⁻¹ K⁻¹.)

Although both $P^o(L)$ and C_w^{sat} decrease with molecular size, the water solubility is more sensitive to size increases due to the greater energy costs associated with cavity formation in water. Therefore, for a series of structurally related compounds, the magnitude of K_{aw} increases with size (i.e., molar volume or TSA). This is true because molecules that have similar functional groups will experience the same type of inter-molecular interactions. Increasing the size within the same functional group class, will result in a systematic increase in the dispersive forces. As can be seen in the figure below, alcohols have a much lower K_{aw} than alkanes due to the stronger solute:solute interactions (lower P^o) and more favourable solute:solvent interactions (larger C_w^{sat}). For molecules of similar size, alkenes are more polarizable than alkanes which results in more favourable solute:solvent induced dipole dispersive interactions, with the latter dominating the overall process. Monopolar molecules such as ethers, ester, ketones and aldehdyes experience dipole – dipole interactions and can act as H-bond acceptor with the solvent, water.

If K_H has a relatively large value for a particular compound, it means it has a greater tendency to partition from the aqueous phase into the atmosphere. Consider the pesticides DDT and Atrazine both of which are very non-volatile with $P^{\circ} \approx 1.3 \times 10^{-10}$ atm and $P^{\circ} \approx 8.9 \times 10^{-10}$ atm at 25°C, respectively. Although Atrazine is about 7 times more volatile than DDT, it has much lower tendency to partition into the atmosphere from water. The K_H for atrazine is 6.2 x 10⁻⁶ atm.M⁻¹, whereas that for DDT is 9.5 x 10⁻³ atm.M⁻¹ (both at 25°C). This is a direct result of the much lower water solubility of DDT ($C_w^{sat} \approx 1.4 \times 10^{-8}$ M) as compared to 1.5 x 10⁻⁴ M for Atrazine. As a result, DDT has been observed to be widespread in the global environment at least in part due to atmospheric transport. Atrazine, on the other hand, tends to partition from air to water and is transported in the environment largely by the movement of water rather than the circulation of air.

Effect of Temperature

Since,

$$InP^{o} = -\frac{\Delta H_{vap}}{R} \left(\frac{1}{T}\right) + constant$$

and

$$InC_{w}^{sat} = -\frac{\Delta H_{s}^{e}}{R} \left(\frac{1}{T}\right) + constant$$

we have;

$$InK_{H}^{sat} = -\frac{\left(\Delta H_{vap} - \Delta H_{s}^{e}\right)}{R} \left(\frac{1}{T}\right) + constant = -\frac{\Delta H_{Henry}}{R} \left(\frac{1}{T}\right) + constant$$

Hence, the temperature dependence of K_H for a given substance can be predicted with a knowledge of ΔH_{vap} and ΔH_s^{e} . Similar results are obtained for gaseous and solid compounds, making the necessary adjustments for the enthalpy of sublimation and fusion (melting) for solids and the enthalpy condensation for gases. The heat of vapourization of an organic liquid is positive and increases with molecular size and increasing polarity. The excess heat of solution (ΔH_s^{e}) is generally smaller. Hence, the effect of temperature on the magnitude of K_H is similar to that on the vapour pressure of the liquid compound. In other words, the dependence of the vapour pressure dominates over that of it's water solubility and K_H generally decreases with decreasing temperature. The figure below shows a comparison of the observed temperature dependence of the Henry's Law constant for trichloroethylene with that predicted from the temperature variations of vapor pressure and water solubility.

Salinity

The presence of salts in the aqueous phase will decrease the water solubility of organic solutes (increase the γ_w^{sat}), but will obviously have no affect on the vapour pressure of the pure liquid. Hence, K_H values will increase with increasing salinity.

$$K_{H}^{salt} = K_{H} 10^{K^{s} [salt]_{tot}}$$

Where K^s is the salt constant specific for a given organic compound. For seawater use [salt] ~ 0.5 M. Recall the effect of salts on the water solubility;

$$C_{salt}^{sat} = C_w^{sat} 10^{-K^s [salt]_{to}}$$

Methods of Determining K_H Values

Experimental methods of determining K_H are usually based on analytical measurements of equilibrated air-water samples in a closed container. Expressing the fraction of solute in the gas phase as the ratio;

fraction in gas phase =
$$\frac{C_g V_g}{C_g V_g + C_w V_w}$$

where V_g is the volume of the gas phase and V_w is the volume of the aqueous phase.

Substituting $K_{\rm H}$ ' = $C_{\rm g}/C_{\rm w}$ yields;

fraction in gas phase =
$$\frac{K_{H}' V_{g}}{K_{H}' V_{g} + V_{w}} = \frac{V_{g}}{V_{g} + \frac{1}{K_{H}'} V_{w}}$$

Thus, if one determines the fraction of solute in the gas phase analytically, K_H ' can be calculated with knowledge of the volumes of the aqueous and gas phases. Conversely, if one knows the value of K_H ', it is possible to calculate the fraction of solute in the gas and aqueous phases, respectively.

 K_H values can be difficult to measure directly, especially when C_w^{sat} is very low. Consequently, a number of estimation techniques have been proposed. A number of linear relationships between the K_H of a series of structurally related compounds and intrinsic properties such as total surface area or boiling points have been met with varying success. Another approach is to sum the contributions of structural units within a molecule to quantitatively predict the properties of the molecule as a whole. One such method introduced by Hine and Mookerjee considers the contribution of each bond type and is surprisingly simple to use. The assumption is that a specific structural unit will increase or decrease a compound's K_H by the same amount regardless of the actual compound. The contribution of each bond type is summed over the entire molecule such that;

$$\log K_{H}' = \Sigma a_i f_i$$

where a_i is the number of subunits of a particular type and f_i is the contributing factor for the particular subunit as refined and summarized by Meylan and Howard in the table below.

For example; the estimated value of K_H' using this approach for diethylether is;

$$\begin{split} &\log K_{H}{}^{'} = 10(\text{C-H}) + 2(\text{C-O}) + 2(\text{C-C}) \\ &\log K_{H}{}^{'} = 10(0.119) + 2(-1.09) + 2(-0.116) = -1.22 \\ &\therefore K_{H}{}^{'} = 10^{-1.22} = 0.0603 \\ &\text{to convert this to } K_{H} \text{ (in atm } M^{-1}) \text{ use;} \\ &K_{H} = K_{H}{}^{'} \text{ x } \text{RT} \\ &= 0.0603 \ (0.08206 \text{ L atm mol}^{-1} \text{ K}^{-1}) \ (298 \text{ K}) \\ &= 1.47 \text{ atm } M^{-1} \end{split}$$

This compares reasonably well with the reported experimental value of 1.62 atm M^{-1} given the level of approximations involved. In general, these estimated values are good within a factor of ~ 2 times the experimental values.

Bond ^b	Contribution	Bond ^b	Contribution
C-H	+0.1197	C _{ar} – OH	-0.5967 °
C-C	-0.1163	$C_{ar} - O$	-0.3473 ^c
$C - C_{ar}$	-0.1619	$C_{ar} - N_{ar}$	-1.6282
$C - C_d$	-0.0635	$\mathbf{C}_{\mathbf{ar}} - \mathbf{S}_{\mathbf{ar}}$	-0.3739
$C - C_t$	-0.5375	$C_{ar} - O_{ar}$	-0.2419
C-CO	-1.7057	$C_{ar} - S$	-0.6345
C - N	-1.3001	$C_{ar} - N$	-0.7304
C-0	-1.0855	$C_{ar} - I$	-0.4806
C – S	-1.1056	$C_{ar} - F$	+0.2214
C - Cl	-0.3335	$C_{ar} - C_d$	-0.4391
C – Br	-0.8187	$C_{ar} - CN$	-1.8606
C-F	+0.4184	$C_{ar} - CO$	-1.2387
C-I	-1.0074	$C_{ar} - Br$	-0.2454
$C - NO_2$	-3.1231	$C_{ar} - NO_2$	-2.2496
C - CN	-3.2624	CO - H	-1.2102
C – P	-0.7786	CO – O	-0.0714
C = S	+0.0460	CO - N	-2.4261
$C_d - H$	+0.1005	CO - CO	-2.4000
$C_d = C_d$	-0.0000 d	O - H	-3.2318
$C_d - C_d$	-0.0997	O - P	-0.3930
$C_d - CO$	-1.9260	0-0	+0.4036
$C_d - Cl$	-0.0426	O = P	-1.6334
$C_d - CN$	-2.5514	N - H	-1.2835
$C_d - O$	-0.2051	$\mathbf{N} - \mathbf{N}$	-1.0956 ^e
$C_d - F$	+0.3824	N = O	-1.0956 °
$C_t - H$	-0.0040	N = N	-0.1374
$C_t \equiv C_t$	-0.0000 ^d	S - H	-0.2247
$C_{ar} - H$	+0.1543	S - S	+0.1891
$C_{ar} - C_{ar}$	-0.2638^{f}	S - P	-0.6334
$C_{ar} - C_{ar}$	-0.1490 ^g	S = P	+1.0317
$C_{ar} - Cl$	+0.0241		

Table 6.4 Bond Contributions for Estimation of log K_{iaw} at 25°C ^a

(1) Environmental Organic Chemistry, 2 nd Ed., R.P. Schwarzenbach; P.M. Gschwend; D.M. Imoden, J. Wiley and Sons, **2004**.