CHEMISTRY 311-ASSIGNMENT 1

Hand-in your answers in a neat organized format to the appropriate number significant figures, showing chemical equations and calculations where appropriate.

Due date: Tuesday, October $3^{\text {rd }}$

1. A student prepares a combined standard solution by weighing out 252.6 mg of KNO_{3} and 148.5 mg of $\mathbf{N a H}_{2} \mathbf{P O}_{4} \cdot \mathbf{3 H}_{2} \mathbf{O}$, dissolving in deionized water to a final mass of 102.234 g . After mixing, 1.022 g of this solution was transferred to a clean dry container and diluted with deionized water to a final mass of 250.654 g . Calculate the final concentration $\mathrm{NO}_{3}-\mathbf{N}$ and $\mathbf{P O}_{4}{ }^{3-}-\mathbf{P}$ in ppb.
2. A method to measure the soluble organic carbon in seawater includes oxidation of the organic materials to $\mathbf{C O}_{\mathbf{2}}$ with $\mathbf{K}_{2} \mathbf{S}_{\mathbf{2}} \mathbf{O}_{\mathbf{8}}$, followed by gravimetric determination of the CO_{2} trapped by a column of $\mathbf{N a O H}$-coated asbestos. A water sample weighing 6.234 g produced 2.378 mg of $\mathbf{C O}_{2}$. Calculate the concentration of organic carbon in seawater as ppm C.
3. The amount of iron in a meteorite was determined by redox titration using KMnO4 as the titrant. A 0.4185 g sample of the meteorite was dissolved in acid and the liberated $\mathbf{F e}^{3+}$ was quantitatively converted to $\mathbf{F e}^{\mathbf{2 +}}$ using a reducing column. Titrating this solution with $0.02500 \mathrm{M} \mathrm{KMnO}_{4}$ requires 41.27 mL to reach the end-point. Determine the wt \% of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in the sample.
4. The Total Hardness of a water sample can be determined volumetrically using ethylenediamine tetraacetate (EDTA), which forms a $1: 1$ complex with $\mathbf{C a}^{2+}$ and other divalent metal cations. Calculate the Total Hardness and express as ppm $\mathbf{C a C O}_{3}$, if a $50.00 \pm 0.05 \mathrm{~mL}$ water sample required $3.22 \pm 0.03 \mathrm{~mL}$ of a $(1.330 \pm 0.005) \times 10^{-3} \mathrm{M}$ EDTA titrant to reach a Calmagite end-point. Estimate the uncertainty in your answer by propagation of the reported errors, given that only one analytical determination was made.
5. A Standard Reference Material is certified to contain 94.6 ppb of a persistent organic pollutant. The results of five replicate analysis are $98.6,98.4,97.2,94.6$ and 96.2 ppb . Quantify the precision and accuracy of this determination.
6. A field portable volumetric analysis method for Total Alkalinity using a Hach Digital Titrator ${ }^{\top M}$ is based on the neutralization of bases in a water sample with the protons of a standardized sulfuric acid titrant $\left(\mathbf{H}_{2} \mathbf{S O}_{4}\right)$. The volume of titrant added is recorded with a digital counter which corresponds to the delivery of $1.25 \mu \mathrm{~L}$ and can be converted to an analyte concentration with an appropriate 'digit multiplier'. Calculate the 'digit multiplier' for the titration of a 25 mL sample with $0.1600 \mathrm{~N} \mathrm{H}_{2} \mathbf{S O}_{4}$ titrant cartridge to yield the total alkalinity in units of ppm as CaCO_{3}.
7. The following method is reported in Standard Methods for the Examination of Water and Wastewater for the analysis of sodium hypochlorite $(\mathbf{N a O C l})$ in bleach.

- a 20.00 mL sample of bleach is diluted to 100.0 mL .
- a 25.00 mL aliquot of the diluted sample is then transferred into a flask and treated with an excess acidic iodide solution.
- the iodine thus formed, is titrated with a standard thiosulfate solution.

The chemistry is outlined below (unbalanced equations):
Excess iodide is reacted with the analyte in an acidic solution.

$$
\mathbf{O C l}^{-}+\mathbf{I}^{-}+\mathbf{H}^{+} \rightarrow \mathbf{C l}^{-}+\mathbf{I}_{2}+\mathbf{H}_{2} \mathbf{O}
$$

The resulting iodine $\left(\mathbf{I}_{2}\right)$ is then titrated with a standardized solution of sodium thiosulfate.

$$
\mathbf{S}_{2} \mathbf{O}_{3^{2-}}^{2^{-}} \mathbf{I}_{2} \rightarrow \mathbf{S}_{4} \mathbf{O}_{6}{ }^{2-}+\mathbf{I}^{-}
$$

If 12.62 mL of a 0.00400 N thiosulfate solution was required to reach the end point, what is the concentration of the original bleach solution as wt \% and ppm as $\mathbf{C l}_{\mathbf{2}}$?
8. A 64.3 mg sample of a protein $(\mathrm{MW}=58,600)$ was treated with 2.00 mL of 0.0487 M sodium periodate $\left(\mathbf{N a I O}_{4}\right)$ to selectively react with all of the serine and threonine residues.
The resulting solution was then treated with excess iodide ion to convert the unreacted periodate into triiodide ion (\mathbf{I}^{-}).

$$
\mathbf{I O}_{4}^{-}+3 \mathbf{I}^{-}+\mathbf{H}_{2} \mathbf{O} \rightarrow \mathbf{I O}_{3^{-}}+\mathbf{I}_{3^{-}}+\mathbf{O H}^{-}
$$

A microtitration of the triiodide ion required $823 \mu \mathrm{~L}$ of 0.0988 M thiosulfate.

$$
2 \mathbf{S}_{2} \mathbf{O}_{3^{2-}}+\mathbf{I}_{3^{-}} \rightarrow 3 \mathbf{I}^{-}+\mathbf{S}_{4} \mathbf{O}_{6^{2-}}{ }^{2-}
$$

Calculate the total number of serine + threoine residues per molecule of protein.

