CHEMISTRY 311 - ASSIGNMENT 1

Hand-in your answers in a neat organized format to the appropriate number significant figures, showing chemical equations and calculations where appropriate.

Due date: Tuesday, October $3^{\text {rd }}$

1. A student prepares a combined standard solution by weighing out 252.6 mg of KNO_{3} and 148.5 mg of $\mathbf{N a H}_{\mathbf{2}} \mathbf{P O}_{\mathbf{4}} \cdot \mathbf{3 H}_{\mathbf{2}} \mathbf{O}$, dissolving in deionized water to a final mass of 102.234 g . After mixing, 1.022 g of this solution was transferred to a clean dry container and diluted with deionized water to a final mass of 250.654 g . Calculate the final concentration $\mathrm{NO}_{3}-\mathbf{N}$ and $\mathbf{P O}_{4}{ }^{\mathbf{3}-}-\mathbf{P}$ in ppb.

Strategy: This question involves a series of gravimetric dilutions. Since we are asked for the final concentrations as mass ratio (i.e., $\mu \mathrm{g} / \mathrm{kg}$ of nitrate-nitrogen and phosphatephosphorus, respectively), we can convert the mass of solids dissolved into a corresponding mass of the elements N and P. Dividing by the mass of solution and taking into account the dilutions yields the final result.

Solution:

In the stock standard solution we have;

$$
\frac{\mu \mathrm{g} \mathrm{NO}_{3}-\mathrm{N}}{\mathrm{~kg} \mathrm{soln}}=\frac{252.6 \mu \mathrm{~g}}{102.234 \mathrm{~g}} \times \frac{1000 \mathrm{mg}}{1 \mathrm{mg}} \times \frac{14.007 \mathrm{~g} / \mathrm{mol}}{101.103 \mathrm{~g} / \mathrm{mol}} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}=3.423_{1} \times 10^{5} \mathrm{ppb} \mathrm{NO}_{3}-\mathrm{N}
$$

and

$$
\frac{\mathrm{mg} \mathrm{PO}_{4}-\mathrm{P}}{\mathrm{~kg} \text { soln }}=\frac{148.5 \mathrm{mg}}{102.234 \mathrm{~g}} \times \frac{1000 \mathrm{~g}}{1 \mathrm{mg}} \times \frac{30.974 \mathrm{~g} / \mathrm{mol}}{173.977 \mathrm{~g} / \mathrm{mol}} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}}=2.586_{1} \times 10^{5} \mathrm{ppb} \mathrm{PO}_{4} \quad \mathrm{P}
$$

After diluting 1.022 g of this stock to a final mass of 250.654 g , we have;

$$
\frac{\left(3.423_{1} \times 10^{5} \mathrm{ppb} \mathrm{NO}_{3}-\mathrm{N}\right)(1.022 \mathrm{~g})}{250.654 \mathrm{~g}}=\mathbf{1 3 9 5 .}_{7} \mathbf{p p b ~ N O}_{3} \quad \mathbf{N}
$$

and

$$
\frac{\left(2.586_{1} \times 10^{5} \mathrm{ppb} \mathrm{PO}_{4}-\mathrm{P}\right)(1.022 \mathrm{~g})}{250.654 \mathrm{~g}}=\mathbf{1 0 5 4 .}_{4} \mathbf{p p b ~ P O}_{4} \mathbf{P}
$$

2. A method to measure the soluble organic carbon in seawater includes oxidation of the organic materials to $\mathbf{C O}_{\mathbf{2}}$ with $\mathbf{K}_{2} \mathbf{S}_{\mathbf{2}} \mathbf{O}_{\mathbf{8}}$, followed by gravimetric determination of the CO_{2} trapped by a column of $\mathbf{N a O H}$-coated asbestos. A water sample weighing 6.234 g produced 2.378 mg of $\mathbf{C O}_{2}$. Calculate the concentration of organic carbon in seawater as ppm C.

Strategy: This question involves a gravimetric determination of the carbon dioxide released upon the combustion dissolved organic carbon. Since we are asked for the final concentration of carbon as mass ratio (i.e., $\mathrm{ppm} \mathbf{C}=\mathrm{mg}$ of carbon per kilogram of seawater sample), we can convert the mass of $\mathbf{C O}_{2}$ trapped into a corresponding mass of carbon. Dividing by the mass of the sample yields the final concentration as $\mathrm{ppm} \mathbf{C}$.

Solution:

$\frac{\mathrm{mg} \mathrm{C}}{\mathrm{kg} \text { sample }}=\frac{2.378 \mathrm{mg} \mathrm{C} \mathrm{C}_{2} \mathrm{O}}{6.234 \mathrm{~g} \text { seawater }} \mathrm{x} \frac{12.011 \mathrm{~g} / \mathrm{moll} 000 \mathrm{~g}}{\mathrm{~g} / \mathrm{mol} 1 \mathrm{~kg}} \mathrm{~g} \frac{104.1 \mathrm{mg} \mathrm{C}}{\mathrm{kg}}=\mathbf{1 0 4 . 1} \mathbf{p p m ~ C}$
3. The amount of iron in a meteorite was determined by redox titration using KMnO_{4} as the titrant. A 0.4185 g sample of the meteorite was dissolved in acid and the liberated Fe^{3+} was quantitatively converted to $\mathbf{F e}^{\mathbf{2 +}}$ using a reducing column. Titrating this solution with $0.02500 \mathrm{M} \mathrm{KMnO}_{4}$ requires 41.27 mL to reach the end-point. Determine the $\mathrm{wt} \%$ of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in the sample.

Strategy: This question involves a volumetric determination of the iron content by titrating with a standard solution of permanganate ion. The number of moles of analyte $\left(\mathrm{Fe}^{2+}\right)$ is determined by the number of moles of titrant added multiplied by the stiochiometric ratio of analyte to titrant (from the balanced chemical equation below). We can then convert the number of moles of $\mathbf{F e}^{2+}$ to the number of moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
Multiplying by the FW and dividing by the sample mass yields the desired mass ratio. Multiplying by 100 gives a wt\%.

$$
\mathbf{M n O}_{4}^{-}+5 \mathbf{F e}^{2+} 8 \mathbf{H}^{+}====\mathbf{M n}{ }^{2+}+5 \mathbf{F e}^{3+}+4 \mathbf{H}_{2} \mathbf{O}
$$

Solution:

$$
\begin{aligned}
& \mathrm{wt} \% \mathrm{Fe}_{2}=\frac{\text { mass } \mathrm{Fe}_{2} \mathrm{O}_{3}}{\text { mass sample }}=\frac{\mathrm{n}_{\mathrm{Fe} 2 \mathrm{O} 3}}{0.4185 \mathrm{~g} \mathrm{sample}} \times \frac{159.688}{1 \mathrm{~mol}} \underline{\mathrm{~g}} \frac{\left(\mathrm{n}_{\mathrm{Fe}} \times \frac{1 \mathrm{~mol} \mathrm{Fe}_{2}}{2 \mathrm{~mol} \mathrm{Fe}}\right)}{0.4185 \mathrm{~g}} \times \frac{159.688}{1 \mathrm{~mol}} \\
& =\frac{\left(\mathrm{n}_{\mathrm{MnO4}} \times \frac{5 \mathrm{~mol} \mathrm{Fe}^{2^{+}}}{1 \mathrm{~mol} \mathrm{MnO}_{4}}\right) \times \frac{1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}{2 \mathrm{~mol} \mathrm{Fe}}}{0.4185 \mathrm{~g}} \times \frac{159.688 \mathrm{~g}}{1 \mathrm{~mol}} \\
& =\frac{\left(\mathrm{M}_{\mathrm{MnO}^{2}} \times \mathrm{V}_{\mathrm{MnO4}}\right) \times \frac{5 \mathrm{~mol} \mathrm{Fe}^{\mathrm{m}^{+}}}{1 \mathrm{~mol} \mathrm{MnO}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}{2 \mathrm{~mol} \mathrm{Fe}}}{0.4185 \mathrm{~g}} \times \frac{159.688 \varepsilon}{1 \mathrm{~mol}} \\
& =\frac{\left.0.02500 \mathrm{~mol} / \mathrm{L} \times 0.04127 \begin{array}{c}
\frac{5 \mathrm{LX} \mathrm{~mol} \mathrm{Fe}^{+}}{1 \mathrm{~mol} \mathrm{MnO}}
\end{array}\right) \times \frac{1 \mathrm{~mol} \mathrm{Fe}_{2} \mathrm{O}_{3}}{2 \mathrm{~mol} \mathrm{Fe}}}{0.4185 \mathrm{~g}} \times \frac{159.688}{1 \mathrm{~mol}} \\
& =0.9842 \text { or } \mathbf{9 8 . 4 2 \%}
\end{aligned}
$$

4. The Total Hardness of a water sample can be determined volumetrically using ethylenediamine tetraacetate (EDTA), which forms a 1:1 complex with $\mathbf{C a}^{2+}$ and other divalent metal cations. Calculate the Total Hardness and express as ppm $\mathbf{C a C O}_{3}$, if a $50.00 \pm 0.05 \mathrm{~mL}$ water sample required $3.22 \pm 0.03 \mathrm{~mL}$ of a $(1.330 \pm 0.005) \times 10^{-3} \mathrm{M}$ EDTA titrant to reach a Calmagite end-point. Estimate the uncertainty in your answer by propagation of the reported errors, given that only one analytical determination was made.

Strategy: This question involves a volumetric determination of the divalent metal cations $\left(\mathrm{M}^{2+}\right)$, which is then expressed as a mass of $\mathbf{C a C O}_{3}$ that would give an equivalent amount of $\mathbf{C a}^{2+}$. Since we are asked for the uncertainty in the final concentration and we do not have any replicate determinations to estimate the precision, we must propagate the various reading errors or other associated uncertainties through the calculation.

Note:
For addition and subtraction, the absolute errors are additive.
For multiplication and division, the relative errors are additive.
See further Section 3.4 of the Textbook.

Solution:
$\frac{\mathrm{mg} \mathrm{CaCO}_{3}}{\text { kg sample }}=\frac{\mathrm{n}_{\mathrm{CaCO}}}{\mathrm{V}_{\text {sample }}} \times \frac{100.087}{1 \mathrm{~mol}} \mathrm{~g} \frac{1 \mathrm{~L}}{1.000 \mathrm{~kg}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~g}}$
$=\frac{\mathrm{M}_{\text {EDTA }} \times V_{\text {EDTA }}}{V_{\text {sample }}} \times \frac{100.087}{1 \mathrm{~mol}} \mathrm{~g} \frac{1 \mathrm{~L}}{1.000 \mathrm{~kg}} \mathrm{x} \frac{1000 \mathrm{mg}}{1 \mathrm{~g}}$
$=\frac{(1.330 \pm 0.005) \times 11^{10} \mathrm{~mol} / \mathrm{L} \times(3.2 \not 20.03) \mathrm{mL}}{(50.00 \pm 0.05) \mathrm{mL}} \times \frac{100.087}{1 \mathrm{~mol}} \frac{\mathrm{~g}}{\mathrm{x}} \frac{1 \mathrm{~L}}{1.000 \mathrm{~kg}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~g}}$
$=8.5727 \frac{\mathrm{mg} \mathrm{CaCO}_{3}}{\mathrm{~kg}} \pm\left(\sqrt{\left(\frac{0.005}{1.330}\right)^{2}+\left(\frac{0.03}{3.22}\right)^{2}+\left(\frac{0.05}{50.00}\right)^{2}}\right)$
$=8.5727 \frac{\mathrm{mg} \mathrm{CaCO}_{3}}{\mathrm{~kg}} \pm(0.0101)$
$=8.57_{3}(\pm 0.08) \mathrm{ppm} \mathrm{CaCQ}$
5. A Standard Reference Material is certified to contain 94.6 ppb of a persistent organic pollutant. The results of five replicate analysis are $98.6,98.4,97.2,94.6$ and 96.2 ppb . Quantify the precision and accuracy of this determination.

Strategy: This question involves quantitative measures of both precision and accuracy. Precision is measure of 'reproducibility' and is best assessed by calculating the sample standard deviation and converting this to a relative standard deviation and a confidence interval (typically at the 95% confidence level). Accuracy is measured by comparing the experimental mean to the accepted value and calculating a \% difference (also known as the \% bias).

Solution:

The sample standard deviation is given by;
$s=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{N-1}}$
For the given data set;
$\mathrm{N}=5, \quad \bar{x}=97.0 \mathrm{ppb}, \quad \mathrm{s}=1.655 \mathrm{ppb}$
and the relative standard deviation $(\mathrm{RSD})=(1.655 / 97.0) \times 100 \%=1.7 \%$

The confidence interval is given by;
$\mathrm{CI}=\frac{(t)(s)}{\sqrt{N}}=\frac{(2.776)(1.655 \mathrm{ppb})}{\sqrt{5}} 2.055 \mathrm{pp}$
where $\mathrm{t}=2.776$ at $\mathrm{N}-1=4$ degrees of freedom and the 95% confidence level.
Consequently, we can be 95% confident that our experimental value is $\mathbf{9 7 . 0}+/-\mathbf{2 . 1} \mathbf{~ p p b}$ (i.e., is between 94.9 and 99.1 ppb).

The \% difference (bias) between our experimental mean and the accepted value is given by;
$\%$ bias $=\left(\frac{97.0-94.6}{94.6}\right) \times 100 \%=\mathbf{2 . 5 \%}$
As we can see, the precision of the analysis of this sample was better than 2% as reported by the RSD. The accuracy of the determination is somewhat suspect as there is an apparent positive bias of $+2.5 \%$. It should be noted however, that the lack of precision limits our ability to be confident that this bias is real as the accepted value is only slightly below our experimental value.
6. A field portable volumetric analysis method for Total Alkalinity using a Hach Digital Titrator ${ }^{\mathrm{TM}}$ is based on the neutralization of bases in a water sample with the protons of a standardized sulfuric acid titrant $\left(\mathbf{H}_{\mathbf{2}} \mathbf{S O}_{4}\right)$. The volume of titrant added is recorded with a digital counter which corresponds to the delivery of $1.25 \mu \mathrm{~L}$ and can be converted to an analyte concentration with an appropriate 'digit multiplier'. Calculate the 'digit multiplier' for the titration of a 25 mL sample with $0.1600 \mathrm{~N} \mathrm{H}_{2} \mathbf{S O}_{4}$ titrant cartridge to yield the total alkalinity in units of ppm as CaCO_{3}.

Strategy: This question involves the volumetric determination of Total Alkalinity using a digital titrator. We are told that 1 digit counter $=1.25 \mu \mathrm{~L}$ of titrant added and need to calculate a 'multiplier' that converts \# of digits to the Total Alkalinity as ppm CaCO3. So, let's calculate of concentration of analyte in a 25.0 mL sample as if the end point was reached after adding 1 digit of the specified 0.1600 N sulfuric acid. Since the concentration of the titrant is given as Normality, we can say that the \#equivalents of titrant = \#equivalents of analyte (or any unit of concentration that is equivalent to the amount of analyte).

$$
\mathrm{N}_{\text {analyte }}=\frac{\mathrm{N}_{\text {titart }} \times \mathrm{V}_{\text {titant }}}{\mathrm{V}_{\text {analyte }}}
$$

Solution:

$$
\mathrm{N}_{\text {analyte }}=\frac{0.1600 \mathrm{~N} \times 1.25 \times 10 \mathrm{~L}}{25.0 \times 10 \mathrm{~L}}=8.00 \times 10^{6} \mathrm{~N}
$$

Converting this to $\mathrm{ppm}_{\mathbf{C a C O}}^{3}$ gives;

$$
\frac{8.00 \times 10 \text { equiv }}{\mathrm{L}} \times \frac{50,000 \mathrm{mg}_{\text {equiv }} \times \frac{1 \mathrm{~L}}{1.00 \mathrm{~kg}}=0.400 \mathrm{ppm} \mathrm{CaCO} 3}{}
$$

This means that each digit (i.e., $1.25 \times 10^{-6} \mathrm{~L}$) of this titrant added to a 25.0 mL sample corresponds to 0.400 ppm of $\mathbf{C a C O}_{3}$ in the sample. Consequently, the \# of digits required to reach the endpoint can be multiplied by ($\mathbf{0 . 4 0} \mathbf{~ p p m ~ C a C O} 3 /$ digit) to obtain the Total Alkalinity as ppm $\mathbf{C a C O}_{3}$.
7. The following method is reported in Standard Methods for the Examination of Water and Wastewater for the analysis of sodium hypochlorite $(\mathbf{N a O C l})$ in bleach.

- a 20.00 mL sample of bleach is diluted to 100.0 mL .
- a 25.00 mL aliquot of the diluted sample is then transferred into a flask and treated with an excess acidic iodide solution.
- the iodine thus formed, is titrated with a standard thiosulfate solution.

The chemistry is outlined below (unbalanced equations):
Excess iodide is reacted with the analyte in an acidic solution.

$$
\mathbf{O C l}^{-}+\mathbf{I}^{-}+\mathbf{H}^{+} \rightarrow \mathbf{C l}^{-}+\mathbf{I}_{2}+\mathbf{H}_{2} \mathbf{O}
$$

The resulting iodine $\left(\mathbf{I}_{2}\right)$ is then titrated with a standardized solution of sodium thiosulfate.

$$
\mathbf{S}_{2} \mathrm{O}_{3}{ }^{2-}+\mathbf{I}_{2} \rightarrow \mathbf{S}_{4} \mathrm{O}_{6} \mathbf{6}^{2-}+\mathbf{I}^{-}
$$

If 12.62 mL of a 0.00400 N thiosulfate solution was required to reach the end point, what is the concentration of the original bleach solution as $\mathrm{wt} \%$ and ppm as $\mathbf{C l}_{\mathbf{2}}$?

Strategy: This question involves a volumetric determination of the concentration of $\mathbf{N a O C l}$ in a bleach solution. Since the concentration of the titrant in given in units of Normality, we will solve this using equivalents and not worry about balancing the chemical equations. We will determine the Normality of $\mathbf{N a O C l}$ in the titrated solution, account the dilution and convert to a wt $\%$ and $\mathrm{ppm} \mathbf{C l}_{2}$ in the original solution.

Solution:

$$
\begin{aligned}
& N_{\text {analyte }}{ }^{\text {dilute }}=\frac{N_{\mathrm{S} 203} \times \mathrm{V}_{\mathrm{S} 2 \mathrm{O} 3}}{\mathrm{~V}_{\text {analye }} \text { dilut }}=\frac{(0.00400 \text { equiv/L) } \times(12.62 \mathrm{~mL})}{25.00 \mathrm{~mL}}=2.01_{9} \times 10^{3} \text { equiv/L } \\
& N_{\text {analyte }}^{\text {original }}=\frac{N_{\text {analyte }}^{\text {dilute }} \times \mathrm{V}_{\text {analyte }}^{\text {dilute }}}{\mathrm{V}_{\text {analyte }}^{\text {original }}}=2.01_{9} \times 10^{3} \text { equiv/L } \times \frac{100.0 \mathrm{~mL}}{20.00 \mathrm{~mL}}=0.0100_{9} \text { equiv/L }
\end{aligned}
$$

To convert this to wt \% we need the mass of each equivalent of $\mathbf{N a O C l}$, which is referred to as the Equivalent Weight (EW). Recall the $\mathrm{EW}=\mathrm{MW} / \mathrm{K}$, where K is the number of equivalents/mol or in this case;
$\mathrm{K}=\frac{\# \text { mols of e transferred }}{\mathrm{mol} \text { of } \mathrm{NaOCl} \text { reacted }}=\frac{2 \text { equiv }}{1 \mathrm{~mol}}$
since $\mathrm{OCl}-\rightarrow \mathrm{Cl}$ (note the change in oxidation state on the chlorine goes from $+1 \rightarrow-1$). Therefore;
$\mathrm{EW}_{\mathrm{NaOCl}}=\frac{74.45 \mathrm{~g} / \mathrm{mol}}{2 \text { equiv/mol }}=37.23 \mathrm{~g} /$ equiv $\left(\right.$ similarly $\mathrm{EW}_{\mathrm{C} 12}=70.91 / 2=35.45 \mathrm{~g} /$ equiv $)$
and

$$
\begin{aligned}
& \mathrm{wt} \%=\frac{\text { mass } \mathrm{NaOCl}}{\text { mass solution }} \times 10^{2}=\frac{(0.01009 \text { equiv })(37.23 \mathrm{~g} / \text { equiv })}{1 \mathrm{~L}} \times \frac{1 \mathrm{~L}}{1.00 \mathrm{~kg}} \times 10^{2}=\mathbf{3 7 .} \mathbf{6} \% \\
& \operatorname{ppm~Cl} 2=\frac{\text { mass } \mathrm{Cl}_{2}}{\text { mass solution }} \times 10^{6}=\frac{(0.01009 \text { equiv })(35.45 \mathrm{~g} / \text { equiv })}{1 \mathrm{~L}} \times \frac{1 \mathrm{~L}}{1.00 \mathrm{~kg}}=\mathbf{3 . 5}_{\mathbf{8}} \times \mathbf{1 0}^{\mathbf{5}} \mathbf{~ p p m ~ C l} \mathbf{2}_{\mathbf{2}}
\end{aligned}
$$

where a density of $1.00 \mathrm{~kg} / \mathrm{L}$ has been assumed.
8. A 64.3 mg sample of a protein $(\mathrm{MW}=58,600)$ was treated with 2.00 mL of 0.0487 M sodium periodate $\left(\mathbf{N a I O}_{4}\right)$ to selectively react with all of the serine and threonine residues.
The resulting solution was then treated with excess iodide ion to convert the unreacted periodate into triiodide ion (\mathbf{I}^{-}).

$$
\mathbf{I O}_{4}^{-}+3 \mathbf{I}^{-}+\mathbf{H}_{2} \mathrm{O} \rightarrow \mathbf{I O}_{3^{-}}+\mathbf{I}_{3^{-}}+\mathbf{O H}^{-}
$$

A microtitration of the triiodide ion required $823 \mu \mathrm{~L}$ of 0.0988 M thiosulfate.

$$
2 \mathbf{S}_{2} \mathbf{O}_{3^{2-}}+\mathbf{I}_{3^{-}} \rightarrow 3 \mathbf{I}^{-}+\mathbf{S}_{4} \mathbf{O}_{6^{2-}}{ }^{2-}
$$

Calculate the total number of serine + threoine residues per molecule of protein.

Strategy: This question involves a back titration. The number of moles of serine and threoine residues is determined by the difference between the number of periodate ions initially present and the number remaining after some of them have reacted with the protein. The final answer is expressed as the ratio of the number of moles of serine + theoine to the number of moles of protein.

Solution:

$$
=51.7 \rightarrow \mathbf{5 2} \text { residues of serine + threoine per protein! }
$$

$$
\begin{aligned}
& \frac{\text { moles }(\text { serine }+ \text { threoine })}{\text { moles protein }}=\frac{n_{\mathrm{IO} 4}^{\text {reacted }}}{\frac{\text { mass protein }}{\mathrm{MW}_{\text {protein }}}}=\frac{\left(n_{\mathrm{IO} 4}^{\text {initial }}-n_{\mathrm{IO} 4}^{\text {remaining }}\right)}{\frac{64.3 \times 10^{-3} \mathrm{~g}}{58,600 \mathrm{~g} / \mathrm{mol}}} \\
& =\frac{\left(\mathrm{M}_{\mathrm{IO} 4} \times \mathrm{V}_{\mathrm{IO} 4}\right)^{\text {initial }}-n_{\mathrm{S} 2 \mathrm{O} 3} \times \frac{1 \mathrm{~mol} \mathrm{IO}_{4}^{-}}{2 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}}}{1.0973 \times 10^{-6} \mathrm{moles}}=\frac{\left(\mathrm{M}_{\mathrm{IO4}} \times \mathrm{V}_{\mathrm{IO} 4}\right)^{\text {initial }}-\left(\mathrm{M}_{\mathrm{S} 2 \mathrm{O} 3} \times \mathrm{V}_{\mathrm{S} 2 \mathrm{O} 3}\right) \times \frac{1 \mathrm{~mol} \mathrm{IO}_{4}^{-}}{2 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}}}{1.0973 \times 10^{-6} \mathrm{moles}} \\
& =\frac{\left(0.0487 \mathrm{~mol} / \mathrm{L} \times 2.00 \times 10^{-3} \mathrm{~L}\right)-\left(0.0988 \mathrm{~mol} / \mathrm{L} \times 823 \times 10^{-6} \mathrm{~L}\right) \times \frac{1 \mathrm{~mol} \mathrm{IO}_{4}^{-}}{2 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}}}{1.0973 \times 10^{-6} \mathrm{moles}} \\
& =\frac{\left(9.74 \times 10^{-5} \mathrm{mols}\right)-\left(\left(8.13 \times 10^{-5} \mathrm{mols}\right) \times \frac{1 \mathrm{~mol} \mathrm{IO}_{4}}{2 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}_{3}}\right)}{1.0973 \times 10^{-6} \mathrm{mols}}
\end{aligned}
$$

