LAB 0: GOOD LABORATORY PRACTICES EXERCISE

OBJECTIVE

- a) to prepare a stock and standard solution by volumetric dilution and
- b) to standardize a solution of unknown concentration using the standard solution.

EXPERIMENTAL PROCEDURE

An accurately weighed quantity of sulfamic acid (a primary standard) is provided in a 100 mL volumetric flask. Prepare your stock solution of sulfamic acid (HSO₃NH₂) by diluting this solid to the 100.00 mL mark with deionized water. Ensure complete mixing of this solution with a minimum of 15-20 inversions. Using the mass information provided on the flask, determine the molarity of stock sulfamic acid (Molar Mass of HSO₃NH₂ = 97.10 g/mol).

Mass of sulfamic acid supplied = 4.782 g

$$[HSO_3NH_2]_{Stock} = \frac{\#_{mols}}{Volume} = \frac{4.782g \times \frac{1 \, mol}{97.10g}}{0.10000 \, L} = 0.492482 \, \frac{mol}{L}$$

$$= 0.4924_{82} \, \frac{mol}{L}$$

Next, prepare a \sim 0.1M standard solution of sulfamic acid by diluting the appropriate volume of stock solution with deionized water in another 100 mL volumetric flask. Note: the final concentration should be known as precisely as possible (it is a standard solution), but need not be exactly 0.1000M (i.e., 0.09981 M or 0.1022 M are completely acceptable values).

exactly 0.1000M (i.e., 0.09981 M of 0.1022 M are completely accompanie value).

Glassware used:
$$20.00 \text{ mL}$$
 pipet & 100.0 mL volumetric flash.

[HSO₃NH₂]_{Standard} = $[HSO_3NH_2]_{S+ock}$ $\frac{V_i}{V_f} \leftarrow 20.00 \text{ mL}$

= 0.0984964 mol

= $9.849_{64} \times 10^{-2} \text{ mol}$

Finally, standardize the unknown sodium hydroxide solution provided by titrating a 25 mL aliquot of standard sulfamic acid with the NaOH solution. Use 3 drops of indicator solution (phenolphthalein) to visualize the endpoint of the titration by the appearance of a persistent light pink color. The stoichiometry of the reaction is:

$$NaOH(aq) + HSO_3NH_2(aq) \rightarrow NaSO_3NH_2(aq) + H_2O(1)$$

Table 1: Example Titration Data for the Standardization of NaOH

Table 1. Example Titration Bata for the Standard Factor							
Trial	Initial Volume	Final Volume	Volume Transferred				
	(+/-0.02 mL)	(+/- 0.02 mL)	(±0,03 mL)				
1	0.12	25.78	25.66				
2	10.08	35.66	25.58				
3	7.34	33.02	25.68				
4	1.98	27.50	25.52				
mi cos co I co is said primary standard using a phenolphthalein end-point							

Titration of 25.00 mL of a sulfamic acid primary standard using a phenolphthalein end-point [HSO3NH2] = 0.0984964 M

mean = 25.6/ml Stdev = 0.074 ml rsd = 0.0901

Calculate the concentration of NaOH for each titration above.

$$[NaOH] = \frac{\#_{mols} \ \#_{SO_3} NH_2 \times \frac{1 \, mol \, NaOH}{1 \, mol \, \#_{SO_3} NH_2}}{Volume \, NaOH \, in \, \#_{thration}} = \frac{9.84964 \times 10^{-2} \, M. \, 25.00 \times 10^{-3} \, L}{25.61 \times 10^{-3} \, L}$$
$$= 9.61503 \, \cancel{mol} \times 10^{-2} \, \cancel{mol}$$

Table 2: Results for the Standardization of NaOH

Table 2	Table 2: Results for the Standardization of NaOTI							
Trial	[NaOH]	Mean	StDev	RSD				
	(M)	(M)	(M)	(%)				
1	0.095963							
2	0.096263	0.0961503	2.8×104	0.29				
3	0,093800	0,0,0,0	2101					
4	0.096489							

Calculated from Data in Table 1

Concentration of NaOH used in subsequent calculations =

(9.61503±0,00028) x10-2 M

How do these results compare to 2012 class data?