Review of Simple Acid/Base Properties

Where HA is used to represent any generic Bronsted acid:

HA (aq) + H₂O(l) ======== H₃O⁺(aq) + A⁻(aq) $K_a = \{[H_3O^+][A^-]/[HA]\}$

STRONG ACIDS completely dissociate and therefore have very large values of K_a . Examples include HCl, HNO₃, HClO₄ and H₂SO₄. The conjugate base of strong acids are very weak bases. Therefore, Cl⁻, NO₃⁻, ClO₄⁻ and SO₄²⁻ are examples of weak bases and are said to be neutral anions.

WEAK ACIDS remain largely undissociated and have relatively small values of K_a . Examples include HF, HNO₂, HOCl and H₂S. The conjugate bases of weak acids are relatively strong bases. Therefore, F⁻, NO₂⁻, OCl⁻ and S²⁻ are examples of basic anions.

STRONG BASES are quantitatively converted into hydroxide ion in aqueous solution. NaOH, KOH, $Ca(OH)_2$ and $Mg(OH)_2$ are examples of strong bases, although the latter two have limited solubility in water.

WEAK BASES partially react with water to produce hydroxide ions.

 $NH_3(aq) + H_2O(l) === NH_4^+(aq) + OH^-(aq)$ $K_b = \{[NH_4^+][OH^-]/[NH_3]\}$

Water is amphoteric . It can both donate and accept a proton, thus it has the ability to act either as an acid or a base.

 $H_2O + H_2O === H_3O^+ + OH^ K_w = [H_3O^+][OH^-] \qquad K_w = 1.0 \ge 10^{-14} \text{ at } 25^{\circ}C$

In general: K_b (base) = K_w/K_a (conjugate acid) and K_a (acid) = K_w/K_b (conjugate base)

Thus, $K_a (NH_4^+) = K_w/K_b(NH_3)$

 $pH = -log a_{H^+} \approx -log [H^+]$

In general: $pH + pOH = pK_w$ In pure water at 25°C; pH = pOH = 7.0

Rules for Predicting the pH of Aqueous Solutions

In general:	Aqueous solutions of covalent oxides are acidic (i.e., CO_2 , SO_2 , SO_3 and NO_2) Note: rainwater is naturally acidic (pH ~ 5.8 - 6.2) due to the presence of atmospheric CO_2				
	Aqueous solutions of ionic oxides are basic (i.e., CaO, MgO and K ₂ O)				
Neutral ions:	All Group 1A and 2A cations (e.g., Na^+ , Ca^{2+} etc) Anions which are conjugates of strong acids (Cl ⁻ , NO_3^- etc)				
Acids:	Uncharged strong or weak acids (e.g., HCl, H_2CO_3 etc.) Metal cations other than those of Groups 1A nad 2A Cationic conjugates of nitrogen bases (e.g., NH_4^+ , C_5H_5NH+ etc) The two anions HSO_4^- and $H_2PO_4^-$				
Bases:	All anions not listed above Uncharged nitrogen bases, such as NH_3 , C_5H_5N etc				

Sample Exercises:

1. State whether the following aqueous solutions are expected to be acidic, basic or neutral

- a) CuCl₂
- b) Na₃PO₄
- c) NH₄Br
- d) MgS

2. Calculate the concentration of ammonium chloride in a solution whose pH is measured as 5.13, given that the K_a for the ammonium ion is 5.6 x 10⁻¹⁰ M.

3. Calculate the value of K_b for cyanide ion, given that a 1.6 x 10^{-2} **M** solution of potassium cyanide has a pH of 10.76. (Compare your answer with that obtained using the K_a for HCN).

4. Commercial bleach is a 5% (wt/wt) solution of sodium hypochlorite. The value of K_a for hypochlorous acid (HOCl) is 2.8 x 10⁻⁸.

- a) Do you expect bleach to be acidic or basic?
- b) Calculate the K_b of hypochlorite ion.

c) Calculate the pH of a 5% bleach solution.

Solutions:

1. Using the rules for predicting the pH of aqueous solutions.

a) acidic (Cu^{2+} metal cations other than alkali and alkali earth metals are slightly acidic, Cl^{-} is neutral) b) basic (Na^{+} is an alkali metal, therefore neutral and PO_4^{3-} is the conjugate base of HPO_4^{2-} , which is a weak acid. Therefore the solution is basic)

c) acidic (ammonium ion is acidic, chloride is neutral)

d) basic (Mg²⁺ is an alkali earth metal, therefore neutral and S²⁻ is the conjugate base of a weak acid HS⁻. Therefore the solution is basic)

2. The relevant equilibria are potentially:

 $\begin{array}{rll} \mathrm{NH_4^+} &+ & \mathrm{H_2O} &==== & \mathrm{NH_3^+} &+ & \mathrm{H_3O^+} & & \mathrm{K_a} = 5.6 \ \mathrm{x} \ 10^{-10} \\ \mathrm{Cl^-} &+ & \mathrm{H_2O} &\Leftarrow & \mathrm{HCl} &+ & \mathrm{OH^-} \\ 2 \ \mathrm{H_2O} &==== & \mathrm{H_3O^+} &+ & \mathrm{OH^-} & & \mathrm{K_w} = 1.0 \ \mathrm{x} \ 10^{-14} \end{array}$

Using the first and last of these, we can set up an equilibrium table as follows. Where $x = 7.31 \times 10^{-6}$, since pH = 5.13, the [H⁺] = $10^{-5.13} = 7.41 \times 10^{-6}$ M

	NH4 ⁺⁻ +	- H ₂ O		NH_3	+	H_3O^+	Ka
Ι	i		0			10^{-7}	
С	- <i>x</i>		x			<i>x</i>	
E	i - x		x			$x + 10^{-7}$	
	<i>i</i> – 7.31 x	10-6	7.	31 x 10) ⁻⁶	7.41 x 10 ⁻⁶	

Using the expression for K_a(NH₄⁺) K_a = [NH₃] [H₃O⁺]/[NH₄⁺] = 5.6 x 10⁻¹⁰ So, (7.41 x 10⁻⁶) (7.31 x 10⁻⁶)/(*i* - 7.31 x 10⁻⁶) = 5.6 x 10⁻¹⁰ Solving for *i* yields, *i* = 0.0097 M

(this is the initial concentration of NH_4^+ , which corresponds to the number of moles of NH_4Cl dissolved per liter. In grams, this is 0.52 g/L)

3. The potentially relevant equilbria are:

 $\begin{array}{rcl} CN^{-} &+ & H_{2}O &==== & HCN &+ & OH^{-} & & K_{b}(CN^{-}) \{= K_{w}/K_{a}(HCN)\} \\ K^{+} &+ & H_{2}O &\leftarrow & KOH &+ & H^{+} \\ 2 & H_{2}O &==== & H_{3}O^{+} &+ & OH^{-} & & K_{w} = 1.0 \times 10^{-14} \end{array}$

Using the first and last of these, we can set up an equilibrium table as follows. Where $x = 5.75 \times 10^{-4}$ M, since pH = 10.76, the pOH = 3.24 and [OH⁻] = $10^{-3.24} = 5.75 \times 10^{-4}$ M,

	CN⁻ +	H_2O	 HCN	+	OH	K _b
Ι	1.6 x 10 ⁻² M		0		10-7	
С	- <i>x</i>		x		x	
	-5.75 x 10 ⁻⁴ M		5.75 x 10 ⁻¹	4	5.75 x 10 ⁻⁴	
E	$1.6 \ge 10^{-2} - 5.7$	5 x 10 ⁻⁴	5.75 x 10 ⁻	4	$10^{-7} + 5.75 \text{ x } 10^{-7}$	0-4
	1.54 x 10 ⁻² M		5.75 x 10 ⁻	4	~5.75 x 10 ⁻⁴	

$$K_b = [HCN] [OH^-]/[CN^-] = (5.75 \times 10^{-4})^2 / (1.54 \times 10^{-2}) = 2.1 \times 10^{-5}$$

(From reference tables of K_a values $K_a(HCN) = 4.9 \times 10^{-10}$, so $K_b(CN) = K_w/K_a = 2.0 \times 10^{-5}$)

4. a) Sodium hypochlorite is basic since OCl is the conjugate base of a weak acid.

b) $K_b = K_w/K_a$ (HOCl) = 1.0 x 10⁻¹⁴/2.8 x 10⁻⁸ = 3.6 x 10⁻⁷

c) First, we must convert the 5% (wt/wt) concentration into one we can use in chemical calculations, molarity (or more precisely activities).

For a 5% soln there is 5 g NaOCl per 100 g of solution. Assuming the density of the solution is close to 1000 g/L, we have;

 $\frac{5 \text{ g NaOCl}}{100 \text{ g soln}} \times \frac{1 \text{ mol NaOCl}}{74.45 \text{ g NaOCl}} \times \frac{1000 \text{ g}}{1 \text{ L}} = 0.67 \text{ M}$

The potentially relevant equilibria are:

 $OCl^- + H_2O === HOCl + OH^ Na^+$ + H_2O \leftarrow NaOH + H^+ $2 H_2 O == H_3 O^+ + OH^ K_w = 1.0 \times 10^{-14}$ Using the first and last of these, we can set up an equilibrium table as follows. OCl^- + H_2O ==== HOCl + $OH^ K_{\rm b} = 3.6 \ {\rm x} \ 10^{-7}$ 10-7 0.67 M Ι 0 С -x х $10^{-7} + x$ E 0.67 - xx $K_b = [HOC1] [OH^-]/[OC1^-] = (x) (10^{-7} + x)/(0.67 - x) = 3.6 \times 10^{-7}$ Expand and solve using quadratic formula

OR ASSUME THAT IF $x \gg 10^{-7}$ and $x \ll 0.67$,

Then the above expression simplifies to

 $x^2/0.67 = 3.6 \times 10^{-7}$

so, $x = 4.9 \times 10^{-4}$ and assumptions check

Therefore, $[OH^-] = 4.9 \times 10^{-4} \text{ M}$ and pOH = 3.31Therefore, pH = 14 - pOH = 10.7