Rules For Assigning Oxidation States

- For free elements the oxidation state is zero.
 e.g. Fe(s), O₂(g), O₃(g), H₂(g), Hg(l), Hg(g), S(s) etc.
- 2. For monoatomic ions, the oxidation state is given by the charge on the ion. e.g. Cl^{-} (-1), Fe^{2+} (+2), Fe^{3+} (+3), S^{2-} (-2), Ca^{2+} (+2), H^{+} (+1) etc
- 3. Certain elements when present in compounds have common oxidation states.
 - a) alkali metals (Li⁺, Na⁺, K⁺) are always +1
 - b) alkali earth metals (Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺) are always +2
 - c) hydrogen is +1 (except in metal hydride compounds such as LiH)
 - d) oxygen is -2 (except in peroxides such as H_2O_2)

e) halogens (F⁻, Cl⁻, Br⁻, I⁻) are usually **-1** (exceptions include interhalogen compounds e.g., in ClF₇, chlorine is **+7** and fluorine is **-1** and oxyanions e.g., in ClO₃⁻ chlorine is **+5**)

4. The sum of the oxidation states in a molecule is zero.

e.g. $H_2O(+1) + (+1) + (-2) = 0$ $Fe(OH)_2$ (+2) + 2(-2) + 2(+1) = 0

5. The sum of the oxidation states in an ion is equal to the charge on the ion. e.g. $OH^{-}(-2) + (+1) = -1$ $SO_{4}^{2-}(+6) + 4(-2) = -2$

Note: Oxidation corresponds to an increase in the oxidation state and reduction corresponds to a decrease in the oxidation state.

Sample Exercises:

- 1. Determine the oxidation states for all of the atoms in each of the following:
- a) NO_3^- , NH_3 , NH_4^+ , N_2
- b) Na₂S, Na₂SO₃, Na₂S₂O₃, Na₂SO₄
- c) ClO_4^- , ClO_3^- , ClO_2^- , ClO^-
- d) CO₂, H₂CO₃, C₂H₅OH, CH₃CHO

2. Indicate whether the following processes involve oxidation or reduction

- a) $SO_4^{2-} ---> H_2S$
- b) $NH_4^+ - > NO_3$
- c) NaClO ----> Cl⁻
- d) $2 Cu^+ ----> Cu^{2+} + Cu$

3. In the following reactions identify the species that is oxidised and that being reduced.

- a) $IO_4 + I + H^+ --> I_2 + H_2O$
- b) $NO_3^- + H^+ + Cl^- > NO_2 + Cl_2 + H_2O_2$
- c) $NO_3^- + Cu + H^+ ---> NO_2 + Cu^{2+} + H_2O$