Example Questions involving Gas Phase Kinetics

1. Trichloroethylene (TCE) is an example of a volatile organic compound. Its bimolecular reaction with **OH** has $k = 2.3 \times 10^{-12} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$ at 300 K. Estimate the *half-life* and *residence time* (lifetime) of TCE in the atmosphere if the average concentration of **OH** remains fairly constant at 2.0×10^6 molec cm³.

rate =
$$k$$
 [TCE][OH]
if EOH] is constant, then rate = k [TCE] (pseudo 1^{5} order)
where $k' = k$ EOH]
= $(2.3 \times 10^{-12} \frac{\text{cm}^3}{\text{molec. S}})(2.0 \times 10^6 \frac{\text{molec}}{\text{cm}^3})$
= $4.6 \times 10^{-6} \text{ s}^{-1}$
 $t_{1/2} = \frac{0.693}{k'} = 1.51 \times 10^5 \text{ S}$
= 42 hr
= 60 hr

[Ans: $t_{1/2}$ (TCE) = 42 hr; τ (TCE) = 60 hr]

2. Assume the following reaction is an elementary process.

$$2 \text{ NO}(g) + O_2(g) \rightarrow 2 \text{ NO}_2(g)$$

- a) Write the rate law for this reaction.
- b) A sample of air at 290 K is contaminated by 1.0 ppm $_{\rm v}$ of **NO**. Under these conditions, can the rate law be simplified?
- c) Under the conditions described in b), the half-life of NO has been estimated at 100 hrs. What would the half-life be if the initial NO concentration were 12 ppm_v?

a) rate =
$$k [NO]^2 [O_2]$$
 third order overall

b) Conc. of $O_2 = 210,000 \text{ ppmv}$ >> Conc. of $NO = 1.0 \text{ ppmv}$

i. rate = $k' [NO]^2$ (pseudo 2nd order)

where $k' = k [O_2]$

c) when Conc. $NO = 1.0 \text{ ppm}$, $t_{1/2} = 100 \text{ hr}$
 $t_{1/2} = \frac{1}{[A] \cdot k'}$ i. $k' = \frac{1}{[A] \cdot t_{1/2}} = \frac{1}{1.0 \text{ ppmv} \cdot 100 \text{ hr}} = 1.0 \times 10^{-2} \text{ ppmv}^{-1} \text{ hr}^{-1}$

if Conc.
$$NO = 12 ppm_v$$

$$t_{1/2} = \frac{1}{(12ppm_v)(1.0 \times 10^{-2} ppm_v^{-1} hr')} = \frac{1}{0.12 hr^{-1}} = 8.3 hr$$

[Ans: a) rate =
$$k [NO]^2 [O_2]$$

b) rate = $k' [NO]^2$, where $k' = k [O_2]$ is a pseudo second order rate constant c) $t_{1/2} = 8.3 \text{ hr}$]

3. The reaction

 $O(g) + O_2(g) + M \rightarrow O_3(g) + M$ has a rate constant = 1.1 x 10⁻³³ cm⁶ molecule⁻² s⁻¹ at 220K (stratosphere).

- a) What is the rate of reaction if $P_T = 0.010$ atm and the concentration of atomic oxygen is $2.1 \times 10^{-4} \text{ ppm}_{v}$.
- b) Calculate the *pseudo*-first order rate constant for this reaction and the lifetime (residence time) for of O(g) under these conditions.

$$Fate = k [0][0_{2}]IM]$$

$$IMJ = M_{air}^{2} = \frac{R}{RT} \cdot N_{A} \cdot \frac{1L}{10^{3}cm^{3}}$$

$$= \frac{(0.010 \text{ atm}) (6.023 \times 10^{23}) 1L}{(0.08206 L.atm) (220 K) 10^{3}cm^{3}}$$

$$= 3.34 \times 10^{17} \frac{moke}{cm^{3}}$$

$$IO_{2} = M_{2}^{2} = X_{0} M_{air}^{2}$$

$$= 0.21 (3.34 \times 10^{17} \frac{moke}{cm^{3}}) = 7.01 \times 10^{16} \frac{moke}{cm^{3}}$$

$$IO_{1} = M_{0}^{2} = X_{0} M_{air}^{2}$$

$$= 0.0002! (3.34 \times 10^{17} \frac{moke}{cm^{3}}) = 7.01 \times 10^{7} \frac{moke}{cm^{3}}$$

$$IO_{1} = M_{0}^{2} = M_$$

4. What is the lifetime (ie, residence time) of atomic oxygen in the troposphere if its major sink is the reaction

O(g) + O₂(g) + M \rightarrow O₃(g) + M Assume 15°C, 1.00 atm and that $k = 6.0 \times 10^{-34} (T/300)^{-2.3} \text{ cm}^6 \text{ molecule}^{-2} \text{ s}^{-1}$? Compare

this result with that found in Q3, above. $T = \frac{1}{6!}$ where k' is pseudo l^{st} order rate constant

rate = k'[0] if [02] &[M] >> [0]

where k' = k [02] [M]

 $[M] = \eta_{air}^{4} = \frac{P}{RT} \cdot NA \cdot \frac{1L}{10^{3} \text{cm}^{3}} = 2.55 \times 10^{'9} \frac{\text{molec}}{\text{cm}^{3}}$

[02] = No = 0.21 (2.55 × 10 19 molec em3)

= 5.35 × 10 18 molec

 $k' = \left[6.0 \times 10^{-34} \left(\frac{288}{300}\right)^{-2.3} \frac{\text{cmb}}{\text{molec}}\right] \left(2.55 \times 10^{19} \frac{\text{molec}}{\text{cm}^3}\right)$

× (5.35 × 10 18 molec) = 8.99 × 104 5-1

 $T = \frac{1}{k'} = 1.1 \times 10^{-5} \text{ s} = 11 \text{ us}$

[Ans: $\tau(\mathbf{O}) = 11 \ \mu s$; Note that atomic \mathbf{O} is much shorter lived in the troposphere than the stratosphere due to the much greater number densities of at higher pressures.]

5. A catalytic cycle that might have contributed to the formation of \mathbf{H}_2 from \mathbf{H} in the early atmosphere of the Earth is

$$\mathbf{H} + \mathbf{CO} + \mathbf{M} \rightarrow \mathbf{HCO} + \mathbf{M} \qquad k_1$$

 $\mathbf{H} + \mathbf{HCO} \rightarrow \mathbf{H_2} + \mathbf{CO} \qquad k_2$
 $\mathbf{Net:} \ 2 \mathbf{H} \rightarrow \mathbf{H_2}$

Calculate the steady state concentration of the radical **HCO**, if the concentrations of **CO** and **M** were 1.0×10^{12} and 2.5×10^{19} molecules cm⁻³, respectively and the magnitudes of the rate constants k_1 and k_2 are 1.0×10^{-34} cm⁶ molecules⁻² s⁻¹ and 3.0×10^{-10} cm³ molecules⁻¹ s⁻¹, respectively.

At steady states
$$d \in HCO = 0$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in HCO = (k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in HCO = (k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = \begin{cases} k \in HCO = (k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = (k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = (k \in HCO = (k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = (k \in HCO = (k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = (k \in HCO = (k \in HCO = (k \in H \end{bmatrix} = 0 \end{cases}$$

$$d \in HCO = (k \in HCO = (k \in H \end{bmatrix} = 0 \end{cases}$$

$$d$$

[Ans: [HCO] = 8.3 x 10^6 molec/cm³]