CHEM 302 Assignment #3

Provide solutions to the following questions in a neat and well organized manner, including dimensional analysis, where appropriate.
 Reference data sources for any constants and state assumptions, if any.
 Attempt all questions. <u>Submit even number questions only for grading</u>.
 Due Tuesday, Nov 10th, 2015

1. The pH of suspended water droplets is sensitive to the amount of covalent oxide gases present in the atmosphere.

a) Derive a general expression for the pH of rainwater in equilibrium with a monoprotic gas and explain if this will apply to common atmospheric gases like CO₂ and SO₂?
b) Using Excel, plot a graph of pH (y-axis) versus partial pressure of CO₂ (0-1000 ppm_y)

and **SO**₂ (0-1000 ppb_v).

c) Why is the pH of rain much more sensitive to P_{SO2} than P_{CO2} ?

2. Peroxyacetyl nitrate (PAN) decomposes thermally with a temperature dependent unimolecular rate constant of $k = 1.95 \times 10^{16} e^{-13540/T} s^{-1}$.

- a) Suggest the products of the decomposition reaction.
- b) Calculate the activation energy of this reaction using the Arrhenius relation.
- c) Calculate the half-life of PAN in the atmosphere at 25 and -10 $^{\circ}$ C?

3. The ionic composition (in units of ng m⁻³) of an atmospheric aerosol in a tropical rain forest is SO_4^{2-} , 207; NO_3^{-} , 18; NH_4^{+} , 385; K^+ , 180; Na^+ , 247. The pH is 5.22. Use these data to calculate the total positive and negative charge 'concentration' (in units µmol m⁻³) in the aerosol and suggest reasons, which might account for a discrepancy in the charge balance. (Note a mole of charge is referred to as an equivalent, therefore µmol charge m⁻³ is equal to µequiv m⁻³)

4. The least volatile oxidation products of hydrocarbons are usually the corresponding carboxylic acid. The following transformations have been observed and the corresponding vapour pressures are given in the table below.

O		0		
Compound	1-decene \rightarrow	nonanoic	Cyclohexene \rightarrow	1,6-hexandioic
	acid		acid	
Vapour	1.7	6 x 10 ⁻⁴	89	6 x 10 ⁻⁸
Pressure (torr)				

a) What concentration (ppm_v) of each of the hydrocarbon (separately) would be needed to cause the formation of haze, if 1% is converted to the corresponding carboxylic acid? Are these concentrations likely to occur?

b) Look up the structure of α -pinene (emitted from coniferous trees). Do you think it could be responsible for the summer haze in remote BC valleys.

5. A coal burning power station burns 10,000 tonnes of coal per day. The coal is 1.25% sulfur by mass (assume the remaining mass is carbon).

a) Calculate the mass of CO_2 and SO_2 produced per day, assuming complete combustion.

b) Estimate the mixing ratios of N_2 , CO_2 and SO_2 in the stack gases, assuming all the oxygen has been consumed in the combustion process.

c) Calculate the mass of lime (**Ca**(**OH**)₂) needed per day to react with 95% of the **SO**₂ produced.

 $Ca(OH)_2 + SO_2 + \frac{1}{2}O_2 \rightarrow CaSO_4$

6. Soot particles have a density close to 2.2 g cm^{-3} .

a) Use Stokes Law to estimate the rate of settling of particles having the diameters below using the viscosity of air to be 182 µpoise (1 poise = 1 g cm⁻¹ s⁻¹);

i) 15 µm

ii) 0.3 µm

b) How long will it take particles of these sizes to settle out of the atmosphere from a height of 5 km assuming the air is still?

c) Under highly polluted conditions, concentrations of particulates up to 4000 μ g/m³ have been recorded. Assuming the density given above and the average particle diameter of 1 μ m, estimate the number of particles inhaled per hour by a person breathing this polluted air.

7. Nitrogen dioxide is oxidized to nitric acid in the presence of a third body according the reaction below.

NO₂(g) + **OH**(g) \rightarrow **HNO**₃(g) $k = 2.0 \times 10^{-11} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$ If in a laboratory experiment, [**OH**] is maintained at a constant concentration of 2.4 x 10⁶ molec cm⁻³ and 10.0 L of air initially containing 3.5 ppm_v of **NO**₂ is maintained in contact with 0.010 L of liquid water, calculate the pH of the water after 4.5 hr.

8. Suppose the only reactions important in oxidizing SO_2 are the two given below with the second order rate constants reported at 300 K.

 $\begin{array}{rcl} \mathbf{SO}_2(\mathbf{g}) &+ & \mathbf{OH}(\mathbf{g}) \rightarrow & \mathbf{HSO}_3(\mathbf{g}) \\ \mathbf{SO}_2(\mathbf{aq}) &+ & \mathbf{H}_2\mathbf{O}_2(\mathbf{aq}) \rightarrow & \mathbf{H}_2\mathbf{SO}_4(\mathbf{aq}) \end{array} \qquad \begin{array}{rcl} k = 9 \ge 10^{-13} \ \mathrm{cm}^3 \ \mathrm{molec}^{-1} \ \mathrm{s}^{-1} \\ k = 1 \ge 10^3 \ \mathrm{L} \ \mathrm{mol}^{-1} \ \mathrm{s}^{-1} \end{array}$

a) Given the information below at 300K and assuming a constant $[OH] = 5 \times 10^6$ molec cm⁻¹, calculate the amount of liquid water in the atmosphere (expressed g L⁻¹) for the rate of the aqueous phase reaction to equal the rate of the gas phase reaction.

K _H (SO ₂)	P _{SO2}	K _H (H ₂ O ₂)	P _{H2O2}
$1.2 \text{ mol } L^{-1} \text{ atm}^{-1}$	1.0 ppm_{v}	$1 \ge 10^5 \mod L^{-1} atm^{-1}$	1.0 ppb _v

b) How does the half-life of **SO**₂ in the atmosphere vary as the water content increases?