Climate Change: Surface Temperatures and Greenhouse Gases

Balancing the incoming captured solar energy, $((1-A)\Omega/4)$ with the energy emitted from the Earth (σ T⁴) allows us to calculate a steady state temperature of 255 K (~ 35 degrees Kelvin) below the Earth's actual average temperature of ~290 K. This discrepancy is accounted for by the presence of IR absorbing gases in the atmosphere (**H**₂**O**, **CO**₂, **O**₃, **CH**₄, **N**₂**O**). Although these gases are transparent to visible light, they absorb radiation in the IR region where the Earth emits 'blackbody' radiation. To correct for the presence of this co-called 'greenhouse effect' the equation for the overall energy balance is given by;

$$\sigma T^4 = \frac{(l-A)\Omega}{4} + \Delta E$$

where;

 σ is the Stefan – Boltzmann constant (5.67 x $10^{\text{-8}}$ W $\text{m}^{\text{-2}}$ $\text{K}^{\text{-4}})$

A is the Earth's albedo – the fraction of the solar radiation reflected from the Earth (0.3)

Ω is the solar flux (1372 W m⁻²) and ΔE is the magnitude of the 'greenhouse effect' Gases that contribute the most to the greenhouse effect are: $H_2O(g)$, CO_2 and O_3

 CO_2 is increasing at 0.4% per year. CH_4 and N_2O are minor contributing greenhouse gases whose concentrations are increasing at about 0.6% and 0.2% per year.

As the concentration of greenhouse gases increases, the value of ΔE increases and the atmospheric temperatures increase. Gases that absorb in a region of the IR spectrum that is currently transparent (IR 'windows'), have a greater potential to influence atmospheric temperatures. Other factors that influence the global warming potential of a gas are the inherent absorptivity of that gas and their atmospheric lifetime.

IR windows in Earth's atmosphere;

 $\lambda \approx 4 - 6 \ \mu m \ (2800 - 2400 \ cm^{-1}) \\ \lambda \approx 8 - 12 \ \mu m \ (1400 - 800 \ cm^{-1}) \\ \lambda \approx 16 - 20 \ \mu m \ (600 - 400 \ cm^{-1})$

The global warming potential (GWP) of a greenhouse gas is a measure of the potential for global warming per unit mass relative to carbon dioxide over some period of time.

Gas	Lifetime (yrs)		GWP's	
		20 yrs	100 yrs	500 yrs
CO ₂		1	1	1
CH ₄	12	62	23	7
N ₂ O	114	275	296	156
CCl_2F_2	116	7100	7100	4100
CHF ₃	260	9400	12000	12000
CF ₄	50000	3900	22200	32400

1. What would be the Earth's atmospheric temperature if the magnitude of the greenhouse effect (ΔE) is increased by 10%?

[Answer; T = 290.7 K]

2. What was the change in the Earth's albedo resulted from the eruption of Mt. Tambora in 1816, if the average temperature in the Northern Hemisphere dropped by $0.60 \,^{\circ}$ C?

[Answer; $\Delta A = 0.005$]

3. An empirical relationship between atmospheric **CO**₂ concentration and ΔE (the magnitude of the greenhouse effect in W m⁻²) is given by;

$$\Delta E = 133.26 + 0.044 \, [\text{CO}_2]$$

where $[CO_2]$ is the atmospheric concentration of CO_2 in ppm. If the ambient atmospheric CO_2 concentration and albedo were increasing at 0.2% per year, what would the Earth's average temperature be in 100 years?

[Answer; T = 284.8 K]