Aerosol Concentrations and Atmospheric Residence Times

Aerosol concentrations are reported as a number density (# particles/m³) or a mass density ($\mu g/m^3$).

Typical values range from $10 - 500 \ \mu g/m^3$, ranging from rural temperate climates to coastal areas or arid interior climates.

```
Urban areas \rightarrow 200 \ \mu g/m^3
Rural forested areas \rightarrow 10-50 \ \mu g/m^3
Open ocean \rightarrow 10-150 \ \mu g/m^3
```

Settling velocity (due to gravity) is governed by;

$$v_t = \frac{(\rho_{\rm P} - \rho_{\rm air}) C g d_{\rm P}^2}{18 \, \eta}$$

where;

 ρ_P is density of the aerosol particle (in g/m³)

 ρ_{air} is density of the surrounding air (1.2 x 10³ g/m³; at P=1.0 atm & T = 298K) C is a correction term which depends on the particle diameter (from Table 6.4) g is 9.81 m/s²

 d_P is the particle diameter (in m)

 η is the viscosity of surrounding air (1.9 x 10⁻² g/m s; at P=1.0 atm & T = 298K)

Co-agulation rate is governed by;

rate of change in the number of aerosol particles(N) = $\frac{-dN}{dt} = 4 \pi D C d_p N^2$

where;

N is number density of the aerosol particles (in particles/ m^3)

D is the diffusion co-efficent of the aerosol particle

C is a correction term which depends on the particle diameter (from Table 6.4) d_P is the particle diameter (in m)

Since D, C and d_P are constants, this can be re-written as $\frac{-dN}{dt} = k_2 N^2$ where; k_2 is analogous to a second order rate constant given by $k_2 = 4\pi D C d_P$ **1.** Compare the settling velocity of 10 μ m diameter water droplets to that of carbon soot particles (density = 2.5 x 10⁶ g/m³).

[Answer; the soot particles will settle 2.5 times faster than water droplets of equal size]

2. How long will it take for a collection of fine aerosol particles (N = 10^9 m^{-3} ; d_P = 0.01 μ m) to drop to 5 x 10^8 m^{-3} through co-agulation processes.

 $[Answer = 6800 \ s \approx 2 \ hr]$