Chemistry of Aqueous Gases: Acid Rain

1. Given that formaldehyde dissolves in water $\left(\mathrm{K}_{\mathrm{H}}=1.7 \mathrm{M} \mathrm{atm}^{-1}\right)$ and reacts to form a hydrate $\left(\mathrm{K}_{\mathrm{eq}}=2 \times 10^{3}\right)$, calculate the total concentration of formaldehyde in rainwater if its atmospheric concentration 6×10^{9} molec $\mathrm{cm}^{-3}\left(0.22 \mathrm{ppb}_{\mathrm{v}}\right)$.
[Answer: Total $\left(\mathbf{C H}_{\mathbf{2}} \mathbf{O}\right)=0.75 \mu \mathrm{M}$]
2. Calculate the pH of natural rainwater in equilibrium with $\mathbf{C \mathbf { O } _ { 2 }}$ at an atmospheric concentration of $380 \mathrm{ppm}_{\mathrm{v}}$.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{H}}=0.039 \mathrm{M} \mathrm{~atm}^{-1} \\
& \mathrm{~K}_{\mathrm{a} 1}=4.5 \times 10^{-7} \\
& \mathrm{~K}_{\mathrm{a} 2}=4.7 \times 10^{-11}
\end{aligned}
$$

[Answer: $\mathrm{pH}=5.60$]
3. Calculate the pH of natural rainwater in equilibrium with $\mathbf{S O}_{\mathbf{2}}$ at an atmospheric concentration of $5.0 \mathrm{ppb}_{\mathrm{v}}$.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{H}}=5.4 \mathrm{M} \mathrm{~atm}^{-1} \\
& \mathrm{~K}_{\mathrm{a} 1}=1.7 \times 10^{-2} \\
& \mathrm{~K}_{\mathrm{a} 2}=6.4 \times 10^{-8}
\end{aligned}
$$

[Answer: $\mathrm{pH}=4.57$]

