Chemistry of Tropospheric Hydrocarbons

1. Given that global average concentration of methane is 1.7 ppm_v , calculate the concentration of methane in mg/m³ and molecules/cm³.

[Answer: $1.2_1 \text{ mg/m}^3 CH_4$ and $4.5_7 \times 10^{13}$ molecules/cm³; assuming STP]

2. Atmospheric methane reacts with hydroxyl radicals much more slowly than hexane as indicated by the rate constants given below.

CH₄ + **OH** → pdts $k_1 = 8.36 \times 10^{-15} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$ **C**₆**H**₁₄ + **OH** → pdts $k_2 = 5.61 \times 10^{-12} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$

An urban airshed has an atmospheric concentration of methane of 1.7 ppm_v, hexane concentration of 100 μ g/m³, with an average steady state [**OH**] $\approx 2.0 \times 10^6$ molec cm⁻³

a) Calculate the rate of loss of methane and hexane under these conditions.

b) Determine the chemical loss lifetime of both species.

[Answer:	a)	rate of methane loss = 7.7×10^5 molec cm ⁻³ s ⁻¹
		rate of hexane loss = 7.8×10^6 molec cm ⁻³ s ⁻¹

b) $\tau_{CH4}^{OH} = 6 \times 10^7 \, s \approx 700 \, d$ $\tau_{C6H14}^{OH} = 9 \times 10^4 \, s \approx 1 \, d$] **3.** Using the information in the kinetic scheme below, estimate the steady state atmospheric concentration of formaldehyde (H_2CO).

where;

$$k_1 = 8 \ge 10^{-15} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$$

 $k_5 = 1.3 \ge 10^{-11} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$
 $f_5 + f_6 = 4.5 \ge 10^{-5} \text{ s}^{-1}$

[Answer: $[H_2CO] \approx 1 \times 10^{10} \text{ molec } cm^3$]