Example Questions involving Gas Phase Concentrations

1. The National Institute of Occupational Safety and Health's recommended short-term (15 min) exposure limit for benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ is reported as $16.3 \mathrm{mg} / \mathrm{m}^{3}$, whereas it's odour threshold is given $1.5 \mathrm{ppm}_{\mathrm{v}}$.
a) If a benzene odour is detected, does this necessarily mean you have exceeded the short term expousure limit?
b) Benzene has a reported vapour pressure of 95.2 torr at $25^{\circ} \mathrm{C}$. Calculate concentration of benzene in room air, if a large container of benzene was left open in a closed room. (Note; benzene is a known carcinogen, do not try this at home)

$$
\begin{aligned}
& {\left[\text { Ans } 16.3 \mathbf{~ m g} / \mathbf{m}^{3} \rightarrow 5.10 \mathbf{p p m}_{v} \text { or } 1.5 \mathbf{p p m}_{v} \rightarrow 4.8 \mathrm{mg} / \mathbf{m}^{3} ; P_{T}=1.00 \mathrm{~atm} \text { and } T=25^{\circ} \mathrm{C}\right. \text {] }} \\
& {\left[\text { Ans }=390 \mathrm{~g} / \mathrm{m}^{3} \text { or } \mathbf{1 2 . 2} \% ; P_{T}=1.00 \mathrm{~atm} \text { and } T=25^{\circ} \mathrm{C}\right]}
\end{aligned}
$$

2. A student prepares a gas standard by injecting 86 mg of chloroform $\left(\mathrm{CHCl}_{3}\right)$ into an empty sealed 2.00L flask, whereupon it completely evaporates. Calculate the concentration of chloroform as $\mathrm{ppm}_{\mathrm{v}}$.

$$
\left[\text { Ans }=8790 \text { ppm }_{v} ; P_{T}=1.00 \mathrm{~atm}, T=25^{\circ} \mathrm{C}\right]
$$

3. Calculate the number density of oxygen molecules in the atmosphere at an altitude of $30 \mathrm{~km}\left(\mathrm{P}_{\mathrm{T}}=0.015 \mathrm{~atm}, \mathrm{~T}=-40^{\circ} \mathrm{C}\right)$.

$$
\left[\text { Ans }=1.0 \times 10^{17} \text { molecules } / \mathrm{cm}^{3} ; \chi_{02}=0.21\right]
$$

4. The average mass/volume concentration of sulfur dioxide in Nikel Russia is $50 \mu \mathrm{~g} / \mathrm{m}^{3}$. What is the concentration of SO_{2} in parts per billion at $15^{\circ} \mathrm{C}$ and 1 atm .

$$
\left[A n s=18 p^{2} b_{v}\right]
$$

5. If the mixing ratio of ozone in polluted urban air is 50 ppbv , calculate its concentration in $\mathrm{mg} \mathrm{m}^{-3}$.

$$
\left[\text { Ans }=0.10 \mathrm{mg} / \mathrm{m}^{3} ; \text { at } 1.0 \mathrm{~atm} \text { and } 15^{\circ} \mathrm{C}\right]
$$

