Equations and Stuff (Week One)

PV = nRT

$$E_{photon} = hv = \frac{hc}{/}$$

$$t = \frac{stock}{flux} = \frac{1}{Sk}$$

$$P_T = SC_iP_i$$

$$P^o = \frac{M_{atm}g}{4\rho r^2}$$

Derived Values

$$\overline{M}_{air}$$
 = 28.96 g/mol (tropo and strato)
 n_{air} = 2.69x10¹⁹ molecules/cm³ (at STP)

Useful Bits

STP = 273K, 101,300 Pa (O°C, 1.00 atm)

Planck's constant; h=6.626 x 10^{-34} J s

Speed of light in vac; $c = 3.00 \times 10^8 \text{ m/s}$

Acceleration due to gravity; $g = 9.8 \text{ m/s}^2$

Universal gas constant; R = 0.0206 L atm mol⁻¹ K⁻¹ = 8.314 J mol⁻¹ K⁻¹

Pa = N m⁻² N = kg m s⁻² J = N m = kg m² s⁻²

Terminology (Week ONE)

Source, Sink

Reservoir/Compartment

Transformation

Thermodynamics

Kinetics

Residence Time/Lifetime

Primary Pollutant

Secondary Pollutant

Box Model

Troposphere, Stratosphere, Mesosphere, Thermosphere

Radical

Covalent oxide

CHEM 302: Atmospheric Environmental Chemistry