Chemistry of the Global Climate

- 1. Composition of Earth's Atmosphere
- 2. Radiative Energy Balance
- Greenhouse Gases and Aerosols
- 4. Radiative forcing and global warming potentials (GWP)
- 5. Energy Resources Fossil and Renewable

1. Atmospheric composition

Mixing ratios of present day dry Earth atmosphere

Nitrogen	78.08 %
Oxygen	20.95 %
Argon	0.934 %
Carbon	~400 ppm _v (increasing)
dioxide	
Neon	18.2 ppm _v
Helium	5.24 ppm _v
Methane	~1.8 ppm _v (increasing)
Krypton	1.14 ppm _v
Hydrogen	0.5 ppm _v
Nitrous oxide	~0.3 ppm _v (increasing)
Xenon	0.09 ppm _v

Major 'Greenhouse' Gases

Figure 1.2. Schematic diagram showing predictions of the evolution of oxygen, ozone and carbon dioxide to present atmospheric levels (PAL). [After R. P.

Changes in GHGs in the Modern Era

Observations reproducibility

Changes in Atmospheric Composition

Adapted from IPCC third assessment report, 2007

How Much CO₂ in ppm Does a Barrel of Oil Produce?

1 barrel releases 425 kg of CO₂, in moles this is

 $\frac{425 \, kg}{0.044 \, kg \, / \, mol} = 10^4 \, mol$

Since the atmosphere contains 1.7 X 10²⁰ mol of air, one barrel will release

```
\frac{10^4}{1.7 \times 10^{20}} = 6 \times 10^{-17}
```

- •Carbon-based fuel releases 3.15 times its mass in CO₂
- •Mass of a barrel of oil is about 135 kg
- •1 barrel releases 425 kg CO₂

•CO₂ has a molar mass of 44g/mol

```
•INIass of a barrel of oil is about
135 kg
•1 barrel releases 425 kg CO<sub>2</sub>
•CO<sub>2</sub> has a molar mass of 44g/mol
```

This is the fraction of CO_2 relative to the entire atmosphere – multiply by 1 million to get the parts-per-million or ppm. So, 1 barrel releases an additional

 $6 \times 10^{-11} ppm$

Is the observed increase in CO₂ "natural" or ...

Source: J.R. Petit, J. Jouzel, et al. Climate and atmospheric history of the past 420 000 years from the Vostek ice core in Antarctice, Nature 399 (3JUne), pp 429-436, 1999.

Hypothesis

Svante Arrhenius 1896 Artic Balloon Expedition Nobel Prize in Chemistry 1903

The Rodner & Otamatea Times

WAITEMATA & KAIPARA GAZETTE. PRICE-10s per annum in advance WARKWORTH, WEDNESDAY, AUGUST 14, 1912. 3d per Copy.

Science Notes and News.

COAL CONSUMPTION AFFECT-ING CLIMATE.

The furnaces of the world are now burning about 2,000,000,000 tons of coal a year. When this is burned, uniting with oxygen, it adds about 7,000,000,000 tons of carbon dioxide to the atmosphere yearly. This tends to make the air a more effective blanket for the earth and to raise its temperature. The effect may be considerable in a few centuries.

2. Radiative Energy Balance

Black Body Radiation

The sun is very hot and so it's radiation is mostly in the visible spectrum.

The Earth is much cooler then the sun so it emits in the infrared.

Humans, like the Earth emit in the infrared.

Observational Evidence for an Enhanced Greenhouse effect

More incoming long wavelength infrared energy

Linear trend of daily (L_d) over 3200 global weather stations where data are available for at least 300 months (25 years) during the period of 1973-2008.

Wang, K., and S. Liang, (2009), Global atmospheric downward longwave radiation under all-sky conditions from 1973 to 2008, Journal of Geophysical Research, 114, D19101, doi:10.1029/2009JD011800

Observational Evidence for an Enhanced Greenhouse effect

Less long wavelength infrared radiation escaping to outer space at the wavelengths associated with greenhouse gases absorb.

Change in outgoing IR from 1970 to 1997. Reductions attributed to known spectroscopic properties of GHGs.

Observational Evidence for an Enhanced Greenhouse effect

Tropospheric warming and stratospheric cooling

Observation temperature record

Arctic air temperature change reconstructed (blue), observed (red)

http://www.copenhagendiagnosis.com/

Observation cherry blossom bloom date

Cherry bomb

Date of cherry-blossom peak-bloom in Kyoto, Japan, 800AD - 2016

---- Trend 🛛 🔲 Confidence interval

Economist.com

https://www.economist.com/blogs/graphicdetail/2017/04/daily-chart-4

Global Temperature Relative to 1800-1900 (°C)

Year

Incoming Solar Radiation (short wavelength)

incoming solar radiation (340 W/m2)

29% reflected

absorbed in the atmosphere 23%

Outgoing Blackbody Radiation (function of Temperature) Ultraviolet Visible Infrared \leftrightarrow **SUN** 5000 K $\lambda_{max} \simeq 0.5 \ \mu m$ (vis) 12 Radiant Energy at specific wavelength 3000 K $E_{\lambda} = \frac{2 \pi h c^2 \lambda^{-5}}{hc}$ $(e^{\frac{\hbar c}{\lambda kT}} - 1)$ Log M_ک ھ 1000 K Integrating over all wavelengths yields total radiant energy $\frac{\text{EARTH}}{\lambda_{\text{max}} \sim 10 \ \text{\mu m (IR)}} \ E_{total} = \frac{2 \ \pi^5 \ k^4 \ T^4}{15 \ c^2 \ h^3}$ 500 K 300 K $= \sigma T^4$ 100 K 0.1 1.0 10 100 Wavelength (µm)

Radiative Balance

Radiant Energy In = Radiant Energy Out $\Omega \pi r^2 (1 - A)$ $4 \pi r^2 \sigma T^4$

Solar flux $\Omega = 1368 \text{ W m}^{-2}$

Stefan-Boltzmann σ = 5.67x10⁻⁸ W m⁻² K⁻⁴

Surface area of sphere x E_{total}

Radiative Balance

$$\Omega \pi r^{2} (1 - A) = 4 \pi r^{2} \sigma T^{4}$$

$$\Omega (1 - A) = 4 \sigma T^{4}$$

$$\therefore T = \left[\frac{(1 - A)\Omega}{4\sigma}\right]^{1/4}$$
Predicted global
average temperature

$$= 255 K (-18 \ ^{\circ}C)$$
Radiant energy absorbed
by Earth's atmosphere
'greenhouse' effect

Radiative Forcing (W m⁻²)

Incoming Solar Radiation (short wavelength)

Fig 8.4 (van Loon)

Outgoing Infrared Radiation

King's Centre for Visualization in Science

http://kcvs.ca/concrete/visualizations/global-climate-change

Planetary Climates: Radiative Energy Balance

Infrared Spectral Windows

Collisional Heating in the Atmosphere

3. Greenhouse Gases and Aerosols

Demonstration of variable heat absorbing properties of atmospheric gases

John Tyndall, Royal Albert Hall, London, 1864

C. Section Adv.

http://www.climate4you.com/images/JohnTyndall%202.jpg

J. Manthy J.

Thill Trave MDCCCLXLFlate.7

IR Absorption

(spectroscopic property)

Transitions between quantized vibrational energy levels within molecules.

(does not apply to monoatomic gases, e.g. Ar and He)

Governed by QM selection rules.

--> change in dipole moment between upper and lower vibrational state

(not met by homonuclear diatomics, e.g. N₂ and O₂)

3N – 5 vibrational modes (where N = #atoms in molecule)

Energy Level Diagrams

Carbon Dioxide

Symmetric stretching modes involve no change in dipole moment \rightarrow IR inactive Asymmetric stretching modes involve large change in dipole moment \rightarrow IR active

Fig. 1 Vibrational modes of CO_2

Carbon Dioxide

Carbon Dioxide

Sources

Sinks
CO₂ –Temperature Feedback Loops

Decreasing solubility in water

Increasing biomass production

Water Vapour

Asymmetric stretching and bending modes involve large change in dipole moment \rightarrow IR active

H₂O – Temperature Feedback Loops

Increased evaporation of water

Increasing Albedo

Sources

Sinks

CH₄ –Temperature Feedback Loops

Permafrost and clathrate destabilization

Sources

Sinks

Sources

Sinks

Aerosols (absorb and reflect)

Aerosol Models

King's Centre for Visualization in Science

http://kcvs.ca/concrete/visualizations/global-climate-change

Planetary Climates: Radiative Energy Balance

Infrared Spectral Windows

Collisional Heating in the Atmosphere

4. Radiative Forcing and GWP

Three factors to rank immediate relative importance of GHGs

- 1) Current atmospheric concentrations
- 2) Wavelength of IR absorption bands
- 3) Strength of IR absorption per molecule

Long term impact also requires atmospheric residence time (τ)

Definitions

Radiative forcing (W m⁻²)

Relative instantaneous radiative forcing (relative to equivalent mass of CO₂)

Global warming potential (relative to equivalent mass of CO₂ over specified time)

Radiative Forcings and GWPs

	RF (W/m²)	RRIF	τ (yr)	GWP - 100 yr
CO ₂	1.7	1	50-100	1
CH ₄	0.48	25	12	28-36*
N ₂ O	0.16	220	114	265-298
O ₃	0.30			
CFC-12		23,000	100	10,900
HCFC-22		14,000	12	1,810
CCl ₄		9,300	26	1,400
aerosols	-1.2 +/- ?			

* Shine, K.P. et al., Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing, *Geophysical Res. Lett.*, 43(24), 12,614-12,623 (**2016**).

Radiative Forcing Caused by Human Activities Since 1750

Radiative forcing (watts per square meter)

Data source: IPCC (Intergovernmental Panel onClimate Change). 2013. Climate change 2013: The physical science basis. Working Group I contribution to the IPCC Fifth Assessment Report. Cambridge, United Kingdom: Cambridge University Press. www.ipcc.ch/report/ar5/wg1.

For more information, visit U.S. EPA's "Climate Change Indicators in the United States" at www.epa.gov/climate-indicators.

Radiative Forcing Caused by Major Long-Lived Greenhouse Gases, 1979–2015

Data source: NOAA (National Oceanic and Atmospheric Administration). 2016. The NOAA Annual Greenhouse Gas Index. Accessed June 2016. www.esrl.noaa.gov/gmd/aggi.

For more information, visit U.S. EPA's "Climate Change Indicators in the United States" at www.epa.gov/climate-indicators.

Anthropogenic GHG

emissions and relative instantaneous forcing

King's Centre for Visualization in Science

http://kcvs.ca/concrete/visualizations/global-climate-change

Planetary Climates: Radiative Energy Balance

Infrared Spectral Windows

Collisional Heating in the Atmosphere

Source	Reaction	∆H _{comb} (kJ/mol)
Natural Gas	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$	-890
Petroleum	$C_{20}H_{42} + 30.5 O_2 \rightarrow 20 CO_2 + 21 H_2O$	-13,300
Coal	$C + O_2 \rightarrow CO_2$	-393

Source	Energy Content (J/amt)	GHG (kg CO ₂ /GJ)
Natural Gas	3.7 x 10 ⁷ J/m ³	49
Petroleum	3.9 x 10 ¹⁰ J/tonne	66
Coal	2-3 x 10 ¹⁰ J/tonne	112
Biomass	1-2 x 10 ¹⁰ J/tonne	-

World Energy Consumption

Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN), IPCC, May, 2011.

Equivalent Energy Used in 1 Year

Renewable Energy Sources

Wind Power

Photo Voltaics

Solar Thermal

Tidal Power

TIDE GOING OUT

Renewables ?

PULLING POWER

The higher you go, the stronger and steadier the wind becomes. Kite-farm energy could be up to four times cheaper than that from conventional wind turbines

 Kite is flown in "figure of 8" pattern for maximum stability and lift

Winch is released and the tethers unwind, spinning the electric generators

With tethers fully unwound, a lightweight computer-control mechanism adjusts the kite's aerofoil, minimising air resistance

Tethers are immediately wound back in, returning kite to original altitude

> A kite with an area of 100 square metres can create a force of about 2 tonnes on the winch, and generate about 100 kilowatts

Stacking multiple kites onto each pair of tethers would provide units capable of generating megawatts

-

14

-

Base units incorporate kite-control software, winches and electric generators, and can rotate to follow the direction of the wind

A radio link provides communication between the base unit and its kite's

Alex Kleidon, Phil Trans Royal Soc, 2011

1

Other 'Top Down' Solutions?

Global Energy Demands

Current use ~ 14 TW Future use (2050) ~ 30 TW

Global Resource Estimates (best case scenarios)

Tidal/Oceans	~ 2 TW
Hydro	~ 2 TW
Wind (10 m)	~ 4 TW
Biomass (all crops)	~ 7 TW
Nuclear (Fission)	~ 8 TW (200/yr forever)
Geothermal	~ 12 TW
Solar 120 000 TW/ (inc	ident) = 000 T/M/prostice

Solar 120,000 TW (incident) ~ 800 TW(practical)

Lewis, N.S. & Nocera, D., PNAS, 2006, 103:15729

Energy Density for Storage

Compressed Air Pump Water Batteries ~0.5 MJ/kg ~0.001 MJ/kg ~0.1 – 0.2 MJ/kg (conventional) ~0.5 - 0.7 MJ/kg (Li ion)

Chemical Bonds

Wood Carbohydrates Coal Liq. Petrol Natural gas Hydrogen ~ 16 MJ/kg ~ 17 MJ/kg ~ 20 MJ/kg ~ 40 MJ/kg ~ 50 MJ/kg ~ 120 MJ/kg

Qualities of Photosynthesis

Carbon sequestration Energy storage 'Fuel' Oxygen production

One hr of sunlight on Earth = global energy needs for 1 yr

Water splitting catalyst driven by sunlight

Elyelrogen/Valexygehlydrovgeter++Chygery

Methanol Fuel Economy

During the day, photovoltaic panels power the home.

At the same time, excess energy is used to split water into hydrogen and oxygen for storage, using the efficient and cost-effective catalyst developed by Nocera and Kanan.

At night, the stored hydrogen and oxygen are recombined in a fuel cell to produce electricity while the photovoltaic cells cannot. FUEL CELL

WATER RETURNS

The fuel cell's water byproduct is recycled into the system to be split later.

Personalized Energy

Solar H₂ production

Bio-inspired Artificial Photosynthesis

Carbon Based Photovoltaics

Nanowire coated graphene sheets for flexible solar cells

ZnO nanowires and PbS quantum dots S. Gradecak et al., *Nano Letters*, 2013

World's most energy efficient LED

Replacing all US fluorescent bulbs

- \rightarrow \$12 billion
- \rightarrow 60 million tons of CO₂
- \rightarrow 50 mid-sized power plants

Philips 200lm/W lighting technology breakthrough

Blue LEDs create light very efficiently... ...but blue light is not suitable for general use

Optimised green phosphor material absorbs the blue light and reemits energy as green light

Colour balance is critical for light quality and efficiency Blue, green and red light is

 Blue, green and red light is combined to create high quality white light

7.5watt TLED emits the same amount of light as a traditional 100watt bulb

Replacing worldwide

 \rightarrow Equivalent to 70% of all car emissions!

April 11, 2013

http://www.newscenter.philips.com/main/standard/news/articles/20130411
Phase Change Materials

BioPCM 23 – 29 °C 98% reduction in cooling costs

Molecular Engineering and Sciences Building, Univ. Washington

"Most of this energy comes from fossil fuels such as coal, oil and natural gas that account for a majority of global carbon dioxide (CO_2) emissions. We know that CO_2 emissions are a leading contributor to climate change, and the world will need a portfolio of solutions to address this Grand Challenge".

Incentivize and Accelerate new CO₂ conversion into 'value added' products

Real-world applications in flue stack of coal and CH₄ power stations

\$20 million dollars

Clean Energy Investment Pact Breakthrough Energy Coalition

Zero-carbon energy technologies Long term investments > 10 years Billions \$ for 'lab' to 'marketplace' R&D

Flexible tr

"Any intelligent civilization on any planet will eventually have to use the energy of its parent star exclusively" Carl Sagan

Many reasons to move from fossil energy to modern energy

Rapid innovations in the modern carbon neutral energy domain

Social Sciences and Humanities Research Council of Canada Conseil de recherches en sciences humaines du Canada

Awareness of Climate Change through Education and Research

