Atmospheric Aerosols

- 1. Introduction
- 2. Sources and Measurement
- 3. Concentrations and Residence times
- 4. Emission controls and abatement technology

Tiananmen Square, Jan. 23rd, 2013

BC Forest Fires: July – August 2017

Smoke relief in the forecast comes too late for marathon runners

Vancouver, August 11, 2017

B.C. wildfire smoke triggers air quality statement for southwestern Manitoba

Smoke could cause issue for people living with asthma, irritate eyes

Downtown Calgary, July, 2017

Size matters

Deposition potential for particles of varying sizes

Classification and properties of atmospheric particulates

Residence time of atmospheric aerosols

Canadian Ambient Air Quality Standards: Current and Proposed

	Management Actions	Proposed Air Management Threshold Values							
Management Level		Ozone (ppb)		PM _{2.5} Annual (µg/m³)		PM _{2.5} 24h (µg/m³)			
		2015	2020	2015	2020	2015	2020		
RED	Actions for Achieving Air Zone CAAQS								
Threshold		63 ppb	62 ppb	10.0 µg/m3	8.8 µg/m3	28 µg/m3	27 µg/m3		
ORANGE	Actions for Preventing CAAQS Exceedance								
Threshold	***************	56 ppb		6.4 µg/m3		19 µg/m3			
YELLOW	Actions for Preventing AQ Deterioration								
Threshold		50	ppb	4.0 µg	j/m3	10	µg/m3		
GREEN	Actions for Keeping Clean Areas Clean								

Aerosol Processes

- Diffusion
- Coagulation
- Condensation
- Chemical reactions
- Sedimentation

Physical and chemical processes influencing size distribution of aerosols

Figure 6.8. Schematic diagram of some of the primary pathways for trace gases to be converted to aerosols (A) in the troposphere. The major reactions involving gas-phase constituents are indicated by the solid lines. Interactions between chemical families are indicated by the dashed lines. Pathways leading to incorporation into precipitation (P) are also shown. [Adapted from R. P. Turco et al. in *Heterogeneous Atmospheric Chemistry*, ed. D. R. Schryer, American Geophysical Union, p. 234 (1982). Copyright © 1982 by the American Geophysical Union.]

Figure 7.11. Schematic diagram illustrating a conceptual model for new particle production near marine convective clouds. [From K. Perry and P. V. Hobbs, J. Geophys. Res., 99, 22813 (1994). Copyright © by the American Geophysical Union.]

2. Sources and measurement

- Sea spray
- Dust
- Combustion
- Condensation –inorganic and organic
- Arctic haze
- Volcanoes

Sea spray

Chemical Concentration Factors (CCF)

$$CCF = \frac{(C_x / C_{Na})_{aerosol}}{(C_x / C_{Na})_{seawater}}$$

CCF > 100 for some heavy metals (e.g., Hg, Cd, Pb) & organics

> After water evaporation fine salt aerosol remains (i.e., 5 – 300 pg of NaCl(s))

Dust

Chemical composition reflects source

- Natural \rightarrow soil and rock types
- Anthropogenic → brake lining, tire components, cement, construction materials

Combustion aerosols

- Forest fires
- Volcanoes
- Internal combustion engines
- Coal burning power plants
- Industry, roasting and smelting

Fly Ash & Bottom Ash

Inorganic minerals (Ca, Mg, SO4 etc)

Trace metals (Hg, Pb, Cd, Se, As)

Soot – elemental carbon

Trace organics (PAHs, PCBs etc)

Figure 2.3.2. Fly ash showing large plerospheres containing smaller cenospheres (courtesy of Hills, 1995).

Condensation aerosols

Inorganics: Ammonium Sulfate and Ammonium Hydrogen Sulfate

From: Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect

Schematic summary of processes that couple Arctic seabird-colony ammonia emissions with climate.

Condensation aerosols

Organics: secondary organic aerosols

Measurement Particle Size Fractionation

aerodynamic impactors

Measurement Optical Particle Sizer & Counter

Figure 2 Flow Through an Optical Particle Counter

3. Concentrations and Residence times

Concentrations reported as either Number density (# particles/m³) Mass density (µg/m³)

Typical range: $10 - 500 \ \mu g/m^3$

Rural forested $10 - 50 \,\mu\text{g/m}^3$

Open ocean $10 - 150 \ \mu g/m^3$

Urban 10 - 300+ μg/m³

Settling velocity

$$v_t = \frac{(\rho_p - \rho_{air}) C g d_p^2}{18\eta}$$

meters per second

 ρ_p = density of particle (g m⁻³)

 ρ_{air} = density of air (g m⁻³)

C = correction factor (see Table 6.4 Textbook)

 $g = 9.81 \text{ m s}^{-2}$

 d_p = diameter of particle (m)

 η = 1.9 x 10⁻² g m⁻¹ s⁻¹ at T=298K, P= 1atm

Coagulation kinetics

$$\frac{-dN}{dt} = 4\pi DCd_{p}N^{2} \qquad N =$$

$$\frac{-dN}{dt} = k_{2}N^{2} \qquad C =$$

$$d_{p} =$$

where $k_2 = 4 \pi D C d_p$

d _p /μm	C	v _t /cm s ⁻¹	$D/m^2 s^{-1}$	t _{1/2}
0.001	216		5.14×10^{-6}	1 min
0.005	43.6		2.07×10^{-7}	0.5 h
0.01	22.2		5.24×10^{-8}	2 h
0.05	4.95		2.35×10^{-9}	38 h
0.1	2.85	1.7×10^{-4}	$6.75 imes 10^{-10}$	110 h
0.5	1.326	$2.0 imes 10^{-3}$	6.32×10^{-11}	520 h
1.0	1.164	$\textbf{6.8}\times \textbf{10^{-3}}$	2.77×10^{-11}	690 h
5.0	1.032	$1.5 imes 10^{-1}$		
10.0	1.016	$6.0 imes 10^{-1}$		
50.0	1.003	15		
100.0	1.0016	58		

Van Loon Pg 143

> ucie number action

4. Emission controls and abatement technology

Aerosol control for larger particles

Cyclone precipitator

Fabric filtration

Aerosol control for smaller particles

Wet Scrubber **Electrostatic Precipitator** Clean gas Clean gas Mist eliminator \mathbb{T} Discharge Power electrode supply Sprayer Collector electrode Electrostatic precipitator Gas distributor plate Gas ************ containing ____ particulates Flue gas Flue gas Water Particles containing to waste particulates

Cyclone Collection (Particle Removal) Efficiency Formula

 $\eta = \frac{1}{1 + (d_{pc}/d_p)^2}$

 $\eta - fractional particle collection efficiency$ $<math>d_{pc} - diameter of particle collected$ with 50% efficiency in m $d_p - diameter of particle of interest in m$

Size distribution of aerosols in engine exhaust

