The most common Chemical Reactions involved in Tertiary Treatment are as follows:

1) Coagulation of suspended solids with Alum Floc

Alum is K_2SO_4 Al₂(SO₄)₃ 24 H₂O and provides a source of Al³⁺ ions. In the pH range of 5 – 6, alum forms a gelatinous network polymer floc.

 Al^{3+} + negatively charged colloids \rightarrow settleable floc

Al³⁺ also forms a highly insoluble precipitate with PO₄³⁻

 $Al^{3+} + PO_4^{3-} \rightarrow AlPO_4(s)$ $K_{sp} = 1.0 \times 10^{-21}$

2) Lime $(Ca(OH)_2)$ is also used to remove phosphates by simultaneously raising the pH and increasing the $[Ca^{2+}]$.

 $3 \operatorname{Ca}(OH)_2 + 2 \operatorname{PO_4}^{3-} \rightarrow \operatorname{Ca_3}(\operatorname{PO_4})_2(s) \rightarrow \operatorname{Ca_5}(\operatorname{PO_4})_3OH(s)$ $K_{sp} = 2.0 \times 10^{-33} \qquad K_{sp} = 1.0 \times 10^{-56}$

Effluent is neutralized with $CO_2(g)$ prior to release.

3) Iron (III) chloride also precipitates phosphates and removes colloids.

 $3 \operatorname{FeCl}_3 + 2 \operatorname{PO}_4^{3-} \rightarrow \operatorname{FePO}_4(s) \rightarrow \operatorname{Fe}_3(\operatorname{PO}_4)_2(s)$

The originally formed iron (III) phosphate is reduced to iron (II) phosphate under anaerobic conditions present in the sludge.