ANSWER ALL QUESTIONS IN SPACE PROVIDED SHOWING YOUR WORK
 Total Marks $=40$

1. The \log concentration of $\mathbf{N i}(\mathrm{II})$ species in water is depicted below as a function of pH .
a) Estimate the fractional abundance of $\mathbf{N i O H}^{+}$at $\mathrm{pH}=9.5$? [1]
b) Which is more acidic $\mathbf{N i}^{\mathbf{2 +}}$ or $\mathbf{N i O H}{ }^{+}$? [1]

2. Derive an expression for the saturation index of calcium carbonate ($\Omega_{\mathrm{CaCO} 3}$) in terms of the concentration of calcium, the $\mathrm{K}_{\mathrm{sp}},\left[\mathrm{CO}_{3}{ }^{2-}\right]_{\mathrm{T}}$ and $[\mathrm{alk}]_{\mathrm{T}}$. You may assume that the pH range is between $7-9$, so that $[\mathrm{alk}]_{\mathrm{T}} \sim\left[\mathrm{HCO}_{3}{ }^{-}\right]$and that the solution is in equilibrium with atmospheric CO2. [4]
3. Calculate the aqueous solubility of aluminum in ppm at pH 9.00 , if $\mathbf{A l}(\mathbf{O H}) \mathbf{3}(\mathrm{s})$ dissolves in dilute aqueous sodium hydroxide solution according to the reaction below. [4]

$$
\mathbf{A l}(\mathbf{O H}) \mathbf{3}(\mathrm{s})+\mathbf{O H}^{-} \quad====\mathbf{A l}(\mathbf{O H}) 4^{-} \quad \mathrm{K}_{\mathrm{f} 4}=0.89
$$

4. a) Compare and contrast any TWO of the following pairs, commenting on the environmental significance. Illustrate your answer with examples, chemical/structural formula, or mathematical equations as appropriate. [6]
i) Coagulation versus Flocculation
ii) Reductive dissolution versus Oxidative dissolution
iii) Octanol-water partitioning constant (K_{ow}) versus Bio-concentration factor (BCF)
b) For any TWO of the following, describe the affect of the specified change using appropriate chemical equilibria to illustrate your answer. [6]
i) increase in $\mathrm{P}_{\mathrm{CO} 2}$ on the solubility of CaCO_{3}
ii) increase in pH on precipitation of $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
iii) presence of hexametaphosphate $\left(\mathbf{P}_{6} \mathbf{O}_{18}{ }^{6-}\right)$ on the dissolution of calcium stearate
$\mathrm{Ca}\left(\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{CO}_{2}\right)_{2}(\mathrm{~s})$
5. What mass of organic matter (represented by the formula $\mathbf{C H}_{2} \mathbf{O}$) is enough to consume all of the dissolved oxygen in 1.0 L of water in equilibrium with the atmosphere at $25^{\circ} \mathrm{C}$? Would your answer change if the organic matter was represented by the formula $\mathbf{C}_{6} \mathbf{H}_{\mathbf{1 2}} \mathbf{O}_{\mathbf{6}}$? [4]
6. In a lake water sample containing $1.0 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ calcium and $500 . \mu \mathrm{g} \mathrm{L}^{-1}$ fulvic acid, determine the fraction of the fulvic acid that is bound to calcium. Assume that calcium is the only metal present in significant concentration at a pH of 5 . Use $5.0 \mathrm{mmol}_{\mathrm{FA}}^{\mathrm{CO} 2}$ - per gram of FA and $\mathrm{K}_{\mathrm{f}}{ }^{\prime}=1.0 \times 10^{3}$. [5]
7. A sewage sample contains 8.8 ppm of dissolved phosphorous in the form of ortho phosphate. It is brought to pH of 9.0 and $\left[\mathbf{C a}^{2+}\right]=4.7 \mathrm{mM}$ by the addition of $\mathbf{C a}(\mathbf{O H})_{2}$. What is the concentration of dissolved phosphorous (as ppm \mathbf{P}) when it's in equilibrium with precipitated calcium phosphate $\left(\mathrm{K}_{\text {sp }} \mathbf{C a 3}\left(\mathbf{P O}_{4}\right)_{2}=1 \times 10^{-24}\right)$? [5]
8. Using the Eh-pH diagram below for lead $\left([\mathbf{P b}]_{\mathrm{T}}=10^{-10}\right)$, estimate the value of β_{2} for the formation lead (II) hydroxide from $\mathbf{P b}^{\mathbf{2 +}}$ and two $\mathbf{O H}^{-}$ligands. You may assume that all lead (II) species are soluble at this concentration. [4]

