1. The phosphorous concentration in Brannen Lake was measured to be **0.14 ppm P**. Convert this to μ mol L⁻¹ of total phosphate. What additional information is required to calculate the concentration of the phosphate ion? Explain. [4]

- 2. Define and state the environmental significance of **THREE** of the following. [6]
- a) chelation
- b) thermal pollution
- c) residence time
- d) polyphosphates
- 3. Provide balanced chemical equations to illustrate TWO of the following. [4]
- a) reduction of SO_4^{2-} to HS^{-}
- b) dissolution of CaCO₃ in the presence of aqueous carbon dioxide

c) aquatic photosynthesis in the presence of Ca^{2+} (use {CH₂O} to represent carbohydrate biomass)

- 4. Use the attached pe-pH diagrams to answer the following. [4]
- a) Estimate the value of K_a for **HCrO**₄⁻

b) Predict the dominant form/s of arsenic, chromium and lead for acid mine drainage water (pH < 4, pe > 10)

c) Predict the dominant form/s of lead in highly productive photosynthetic marine water

d) Predict the dominant form/s of arsenic in slightly acidic groundwaters, where methane gas in known to exist

5. Using the value of K_a for hydrofluoric acid (**HF**), sketch a labelled diagram for the speciation of **HF** as a function of pH. Derive an expression for the fractional abundance for **HF** (α_{HF}) in terms of [**H**⁺] and K_a . [5]

6. A water sample with a pH 7.0 was analyzed for ammonium ion (\mathbf{NH}_4^+) and found to contain 0.5 mmol/L. If the pe of this water is estimated to be 4, predict the concentration of concentration of \mathbf{NO}_3^- . [4]

7. Hydrogen sulfide (H₂S) is considerably more toxic to fish than either HS⁻ or S²⁻. If concentrations greater than 5 μ M H₂S are harmful to fish health, calculate the minimum safe pH when the total sulfide concentration is 20 μ M? [4]

8. A water sample has a measured pH of **8.0** and a total alkalinity reported to be **80 mg** CaCO₃/L. Determine the molar concentration of HCO_3^- , CO_3^{-2-} and OH^- . [4]

9. The pe-pH diagram for selenium is given below.
a) Add the boundary lines for the oxidation and reduction of H₂O, respectively (i.e., stability region). [2]

b) Calculate the <u>slope</u> of the boundary between **HSeO**₄ and **H**₂**SeO**₃. [4] (hint; $pe = pe^{o} - m pH$ is in the form of y = m x + b where *m* represents the slope.)

10. Briefly describe the difference between **TWO** of the following. [4]

- a) COD versus BOD
- b) pH vs alkalinity

c) pe^o versus pe^o(w)

- pe pH for selenium
- pe-pH for chromium, lead, and arsenic
- pe pH for carbon, sulfur, nitrogen, iron
- pH for H2S, H2CO3, H3PO4
- get Gof for selenium species