## COMPOSITION OF NATURAL WATERS

Natural waters contain dissolved and suspended materials that affect and are affected by water chemistry. The presence of these species is largely dependent on the source of the water.

## 1. Rain Water

Relatively low concentrations of total dissolved solids. (TDS < 15 ppm ). Depends of air pollution an geography. For example, coastal rains often contain sea spray salts up to 15 ppm.

Typical rainfall:

| Ion | $\mathbf{S O}_{4}{ }^{2-}$ | $\mathbf{C l}^{-}$ | $\mathbf{N O}_{3}{ }^{-}$ | $\mathbf{N a}^{+}$ | $\mathbf{K}^{+}$ | $\mathbf{M g}^{\mathbf{2 +}}$ | $\mathbf{C a}^{\mathbf{2 +}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conc <br> (ppm) | 2 | 8 | 0.5 | 4 | 0.3 | 0.3 | 2 |
| Conc <br> $(\mathrm{meq} / \mathrm{L})$ | 0.021 | 0.22 | 0.001 | 0.17 | 0.008 | 0.012 | 0.050 |

Low dissolved organic carbon (DOC $<1 \mathrm{mg} / \mathrm{L}$ )
Relatively high concentrations of dissolved gases. ( $\mathbf{O}_{2}, \mathbf{C O}_{2}, \mathbf{S O}_{3}, \mathbf{N O}_{2}$ etc).
$\rightarrow$ oxidizing conditions (high pe)

Gases may be natural (photosynthesis, volcanoes etc) or anthropogenic (industry, transportation etc).

Natural rainwater has $\mathrm{pH} \sim 5.6$

Acid rain $\mathrm{pH}<5$

Other Gases:

## 2. Rivers and Streams

Composition depends on:

1. rain constituents
2. soil/mineral substrate
3. plant/animal life
4. human activity

TDS ~ $20-150 \mathrm{mg} / \mathrm{L}$
DOC ~ 1-10 mg/L
major cations: $\mathbf{C a}^{2+}, \mathbf{M g}^{2+}, \mathbf{N a}^{+}, \mathbf{K}^{+}$
major anions: $\mathbf{H C O}_{3}{ }^{-} / \mathbf{C O}_{3}{ }^{2-}, \mathbf{S O}_{4}{ }^{2-}, \mathbf{C l}^{-}, \mathbf{N O}_{3}{ }^{-}, \mathbf{P O}_{4}{ }^{\mathbf{3 -}}$
dissolved gases: $\quad \mathbf{O}_{\mathbf{2}}(\mathrm{aq})$
$\mathrm{CO}_{2}(\mathrm{aq}) / \mathrm{H}_{2} \mathrm{CO}_{3}$
dissolved organic matter: fulvic and humic acids
suspended solids:
human activity:
agriculture logging mining pulp food processing urbanization

- fertilizers
- treated wastewater
- oils/hydrocarbons
- heavy metals


## 3. Lakes and Resevoirs

1. composition depends on:
2. inflow constituents
3. residence time
4. plant/animal activity
5. human activity

Lake stratification characteristic of deep temperate lakes. Effects chemical specieation and chemical/biological processes.

Epilimnion - high $\mathrm{O}_{2}(\mathrm{aq})$
$\rightarrow$ high pe favours high oxidation states
e.g.,

Thermocline

Hypolimnion - low $\mathrm{O}_{2}(\mathrm{aq})$
$\rightarrow$ low pe favours low oxidation states e.g.,
classification system
oligotrophic $\rightarrow$ mesotrophic $\rightarrow$ eutrophic

## 4. Groundwaters

composition depends largely on soil and rock type

- filtered through soil, sand and clay
- usually low in micro-organisms
- low oxygen content ( $\mathrm{ORP}<-200 \mathrm{mV}$ ), low pe ('reducing' conditions)

TDS $>100 \mathrm{mg} / \mathrm{L}$
DOC $<1 \mathrm{mg} / \mathrm{L}$
typically higher concentrations of $\mathbf{C a}^{\mathbf{2 +}}, \mathbf{M g}^{\mathbf{2 +}}, \mathbf{H C O} \mathbf{3}^{-}$than in surface waters high $\mathbf{C a}^{2+}$ results in 'hard' water
e.g.,

$$
\mathrm{Fe}^{2+}
$$

$\mathbf{M n}^{\mathbf{2 +}}$

Mineral Content in Hotsprings (ppm):

| Ion | $\mathbf{S O}_{\mathbf{4}}{ }^{\mathbf{2 -}}$ | $\mathbf{H C O}_{\mathbf{3}}{ }^{\mathbf{}}$ | $\mathbf{N a}^{+/} \mathbf{K}^{+}$ | $\mathbf{M g}^{\mathbf{2 +}}$ | $\mathbf{C a}^{\mathbf{2 +}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Banff | 572 | 138 | 5 | 36 | 205 |
| Fairmount | 1000 | 700 | 40 | 105 | 480 |

## 5. Marine and Ocean Waters

Concentration of all ions much higher than freshwater, but major ions in seawater are $\mathbf{N a}^{+}$and $\mathbf{C l}^{-}$rather than those in fresh surface water, which are $\mathbf{C a}^{2+}$ and $\mathbf{H C O} \mathbf{O}^{-}$

$$
\text { TDS } \sim 35,000 \mathrm{ppm} \quad \text { (i.e., } 3.5 \% \text { or } 35 \% \text { оо) }
$$

$\mathbf{N a}^{+} \sim 12,000 \mathrm{ppm}$
$\mathbf{C l}^{-} \sim 18,000 \mathrm{ppm}$
$\mathrm{pH}=8.2$
typical DOC ~ $1 \mathrm{mg} / \mathrm{L}$ C
Density ~ $1.035 \mathrm{~g} / \mathrm{mL}$

At high ion concentrations, ions no longer behave as 'free' and 'independent' species.
Ionic Strength $=0.5 \Sigma \mathrm{c}_{\mathrm{i}} \mathrm{Z}_{\mathrm{i}}{ }^{2}=0.71$ (for seawater)
The ionic strength $(I)$ of a solution is a measure of the total amount of dissolved ions and is defined below. The ionic strength affects equilibrium conditions due to ion pairing, a transient and weak association between cations and anions, which reduces their 'effective' concentration to become involved in other processes

Activities reflect 'effective concentrations' of species in solution
\{Activity $\}=$ Activity Co-efficient $x$ [Molar Concentraion]
eg. $\quad\left\{\mathrm{Cl}^{-}\right\}=\gamma_{\mathrm{Cl}}\left[\mathrm{Cl}^{-}\right]$

Activity coefficients range from $\sim 0.8-1.0$ freshwater and $\sim 0.1-0.8$ in seawater

Table: Typical concentrations of inorganic ions in oceans

|  | $\mathrm{ppm} \equiv \mathrm{g} / \mathrm{kg}$ | M | $\mathrm{meq} / \mathrm{L}$ |  |
| :--- | :---: | :---: | :---: | :---: |
| Anions |  |  |  |  |
| $\mathrm{Cl}^{-}$ | 19.4 | 0.55 |  |  |
| $\mathrm{SO}_{4}{ }^{2-}$ | 2.7 | 0.03 |  |  |
| $\mathrm{HCO}_{3}{ }^{-}$ | 0.14 | 0.002 |  |  |
| $\mathrm{Br}^{-}$ | 0.07 | 0.001 |  |  |
| $\mathrm{BO}_{3}{ }^{3-}$ | 0.024 | $4 \times 10^{-4}$ |  |  |
| $\mathrm{CO}_{3}{ }^{2}-$ | 0.012 | $2 \times 10^{-4}$ |  |  |
| $\mathrm{PO}_{4}{ }^{3}-$ | 0.0014 | $1.5 \times 10^{-5}$ |  |  |
| $\mathrm{~F}^{-}$ | 0.0013 | $7 \times 10^{-5}$ |  |  |
| $\mathrm{NO}_{3}{ }^{-}$ | 0.0012 | $2 \times 10^{-5}$ |  | $\sum-v e$ |
|  |  |  |  |  |
| Cations $^{\mathrm{Na}^{+}}$ |  |  |  |  |
| $\mathrm{Mg}^{2+}$ | 10.8 | 0.47 |  |  |
| $\mathrm{Ca}^{2+}$ | 1.3 | 0.05 |  |  |
| $\mathrm{~K}^{+}$ | 0.4 | 0.01 |  |  |
| $\mathrm{Sr}^{2+}$ | 0.4 | 0.01 |  |  |
| $\mathrm{Al}^{3+}$ | 0.0088 | $1 \times 10^{-4}$ |  |  |
| $\mathrm{Li}^{+}$ | 0.0011 | $4 \times 10^{-5}$ |  |  |
|  |  | $2 \times 10^{-5}$ |  | $\sum+v e$ |

