CHEM 301 Assignment #4 (Optional)

Provide solutions to the following questions in a <u>neat and well organized</u> manner.

Clearly state assumptions and reference sources for any constants used.

(odd numbered questions only) December 7th

- 1. The Maximum Acceptable Concentration of mercury in water is 0.001 ppm. Is the MAC likely to be exceeded by the dissolution of a) $\mathbf{HgS}(s)$ ($K_{sp} = 1 \times 10^{-56}$) and b) $\mathbf{HgO}(s)$ (solubility reported as 5.3 mg per 100 mL). Are either of your answers affected by the pH or pe of the water sample? Explain.
- **2.** An effluent waste stream contains 330 mg L^{-1} organic matter (suspended and dissolved) and 27 mg L^{-1} ammonium ion (as **N**). Write chemical equations for the complete oxidation of $\{CH_2O\}$ and NH_4^+ and calculate the total BOD load of this effluent in mg/L O_2 .
- 3. A sewage treatment plant is designed to process 3.0×10^{12} L of sewage daily.
- a) What capacity (m³) is required for the primary settling lagoon if the residence time is to be 6 hours?
- b) If the influent water has a BOD of 850 ppm, what volume of oxygen at 15°C is required per day to reduce the BOD by 90%.
- **4.** Calculate the mass of lime ($Ca(OH)_2(s)$), required to chemically treat 27,000 m³ of waste water containing 6.1 mg L⁻¹ of phosphorous. Assume the following reaction goes to completion when a two fold molar excess of $Ca(OH)_2$ is used.

$$5 \text{ Ca(OH)}_2 + 3 \text{ HPO}_4^{2-} \rightarrow \text{Ca}_5(\text{PO}_4)_3\text{OH} + 6 \text{ OH}^- + 3 \text{ H}_2\text{O}$$

5. A sewage sample contains 8.8 ppm of dissolved phosphorous in the form of ortho phosphate. It is brought to pH of 9.0 and $[\mathbf{Ca}^{2^+}] = 4.7$ mM by the addition of $\mathbf{Ca}(\mathbf{OH})_2$. What is the concentration of dissolved phosphorous (as ppm **P**) when it's in equilibrium with precipitated calcium phosphate $(\mathbf{K}_{sp} \ \mathbf{Ca_3(PO_4)_2} = 1 \times 10^{-24})$?

- **6.** Iron can occur as a carbonate mineral $\mathbf{FeCO_3}$, which has a $K_{sp} = 3.1 \times 10^{-11}$. Calculate the concentration of of iron (ppm) in groundwater in equilibrium $\mathbf{FeCO_3}$ and $\mathbf{CaCO_3}$. The concentration of $\mathbf{Ca^{2+}}(aq) = 120$ ppm. Hint: use the K_{sp} of $\mathbf{CaCO_3}$ of 6.0 x 10⁻⁹ to estimate the $[\mathbf{CO_3}^{2-}(aq)]$.
- 7. Using the solubility of $\mathbf{FePO_4}(s)$ ($K_{sp} = 1.3 \times 10^{-22}$) and the acidity constants for $\mathbf{H_3PO_4}$, determine if a concentration of $\mathbf{Fe^{3+}}$ of 100. ppm would be sufficient to precipitate 90% of the phosphate from a solution initially containing 1.0×10^{-4} mol L^{-1} of total phosphate at a constant pH of 8.00.
- **8.** Gold ores are frequently leached with cyanide dissolving the gold according to; $\mathbf{Au}(s) + 2 \mathbf{CN}^{-}(aq) + {}^{1}\!/_4 \mathbf{O}_2(g) + {}^{1}\!/_2 \mathbf{H}_2 \mathbf{O}(l) ===== \mathbf{Au}(\mathbf{CN})_2^{-}(aq) + \mathbf{OH}^{-}(aq)$ Which has an equilibrium constant, $K = 1.2 \times 10^{17}$. In order to prevent undue environmental contamination by cyanide, you wish to operate this process under conditions such that at least 98% of the \mathbf{CN}^{-} is converted to $\mathbf{Au}(\mathbf{CN})_2^{-}$. Your process operates at a pH 9.0 and the \mathbf{O}_2 pressure inside the ore body is constant at 0.032 atm. Calculate the molar concentration of \mathbf{CN}^{-} required.
- 9. Filter alum $Al_2(SO_4)_3$ is often used to remove phosphate from wastewater. A wastewater of pH 5.62 containing 25 ppm total phosphate is treated with alum until the equilibrium concentration of Al^{3+} is 4.0 x 10^{-9} mol L^{-1} . What fraction of the phosphate is precipitated as $AlPO_4(s)$? Consider only the equilibria below;

AlPO₄(s) ==== Al³⁺(aq) + PO₄³⁻(aq)
$$K_{sp} = 1.0 \times 10^{-21}$$

H₂PO₄⁻(aq) ==== HPO₄²⁻(aq) + H⁺(aq) $K_a = 6.2 \times 10^{-8}$
HPO₄²⁻(aq) ==== PO₄³⁻(aq) + H⁺(aq) $K_a = 4.8 \times 10^{-13}$

10. Lead solder on copper plumbing has been suggested as a possible source of low levels of lead (II) ions in drinking water. Using the standard reduction tables and the Nernst equation, comment on the possibility of \mathbf{Pb}^{2+} being present at or above the MAC of 10. ppb, if the water in contact with $\mathbf{Pb}(s)$ contains \mathbf{Cu}^{2+} at 0.10 ppm (*ignore Cu*⁺ *ions*).