CHEM 301

Assignment #2

Provide solutions to the following questions in a neat and well-organized manner. Reference data sources for any constants and state assumptions, if any. Due date: Thursday, Oct 20th, 2016 Attempt all questions. Only even numbers will be assessed.

1. A pond in an area affected by acid mine drainage is observed to have freshly precipitated $Fe(OH)_3(s)$ at pH 4. What is the minimum value of pe in this water? Use the appropriate pe-pH speciation diagram to predict the dominant chemical speciation of carbon, sulfur and copper under these conditions.

2. The solubility of **FeS**(s) in marine sediments is expected to be affected by the pH and the [**H**₂**S**(aq)] in the surrounding pore water? Calculate the equilibrium concentration of \mathbf{Fe}^{2+} (ppb) at pH 5 and pH 8, assuming the **H**₂**S** is 1.0 x 10⁻³ M. pK_{sp}(**FeS**) = 16.84.

 $\mathbf{FeS}(s) + 2 \mathbf{H}^{+}(aq) == \mathbf{Fe}^{2+}(aq) + \mathbf{H}_{2}\mathbf{S}$

3. Boric acid is a triprotic acid (H₃BO₃); pK_{a1} = 9.24, pK_{a2} = 12.74 and pK_{a3} = 13.80.
a) Derive an expression for the fractional abundance of H₃BO₃ as a function of pH
b) Construct a fully labeled pH speciation diagram for boric acid over the pH range of 0 to 14 using Excel spreadsheet at a 0.2 pH unit interval.

4. At $pCl^{-} = 2.0$, Cd^{2+} and $CdCl^{+}$ are the only dominant cadmium chloride species with a 50% fractional abundance of each.

a) Calculate the equilibrium constant for the formation of **CdCl**⁺ (β_1).

b) Derive an expression for the fractional abundance of **CdCl**⁺ as a function of [**Cl**⁻] and $\beta_1 - \beta_4$ for cadmium chloro species.

c) Calculate the fractional abundance of $CdCl^+$ species at $[Cl^-]_{seawater}$.

5. To measure the volume of a small lake, you add 5.0L of a 2.0M solution of a non-toxic dye which degrades by first order processes with a half-life of 3.0 days. After one week, in which the lake becomes well mixed, you take a 100. mL lake sample. The dye concentration in this sample is 2.9×10^{-6} M. Estimate the lake volume.

6. Lime (calcium hydroxide) is sometimes added to wastewater to reduce the phosphate concentration to acceptable levels. In a pilot study, 10.0 g of Ca(OH)₂ was dissolved in a 100. L distilled water. Calculate the maximum total phosphate concentration $[PO_4^{3-}]_T$ that this test solution could contain assuming that the concentration of PO_4^{3-} is controlled by precipitation of calcium phosphate, $K_{sp} = 1.3 \times 10^{-32}$.

7. Water from the hypolimion of Maynard Lake has a measured pH of 5.81 and an ORP = -290 mV using an ORP probe with an internal silver/silver chloride reference electrode. Standard E_h values are referenced to a standard saturated hydrogen electrode (SHE). Look up the standard reduction potential for the **AgCl**(s) + e- \rightarrow **Ag**(s) + **Cl**⁻ half reaction and correct the field ORP reading to E_h (mV).

- a) Report the pe value of the sample.
- b) Predict the dominant forms of chromium, iron and selenium using the appropriate Eh-pH (Pourbaix) diagrams (attached).

8. a) Calculate the p*e* of air saturated surface water at pH 8.1 in redox equilibrium with a dry atmosphere at sea level.

b) A solution at pH = 7.0 contains Mn^{2+} at an activity of 10^{-5} , as well as some $MnO_2(s)$. The redox half-cell reaction for the $MnO_2(s)/Mn^{2+}$ reaction is shown below. What is the pe of the solution, assuming the system is at redox equilibrium?

 $\dot{\mathbf{MnO_2}}(\mathbf{s}) + 4 \mathbf{H}^+ + 2 \mathbf{e}^- \rightarrow \mathbf{Mn^{2+}} + 2 \mathbf{H_2O} \qquad \mathbf{p}e^\circ = 20.8$ c) Determine the pe of redox boundary between $\mathbf{Fe}(\mathbf{OH})_3/\mathbf{Fe^{2+}}$ as a function of pH at 25°C and a total $C_{\text{Fe}} = 0.010 \text{ mM}.$

9. The potentially fatal effects of acute arsenic exposure are well known, but in recent years the effects of long term low level (chronic) exposures has been hotly debated. As a consequence, the US EPA has recommended lowering the maximum contaminant level (MCL) from 50 ppb As to 5 ppb. Arsenic occurs naturally in two oxidation states: As (III) and As (V). It is acidic in both oxidation states, but much more so as As(V), in which case it is chemically similar to phosphoric acid [i.e., P(V)]. The pK_a values of arsenous acid, H₃AsO₃ and arsenic acid, H₃AsO₄ are shown below and indicate that most of the H₃AsO₃ remains fully protonated at pH 7, whereas H₃AsO₄ is extensively deprotonated. Because of this difference in ionic charge on the dominant species, it is easier to remove As (V) than As (III) from solution by adsorption and ion-exchange processes that might be employed at a water treatment plant.

$AsO_{4^{3-}} + 2$	$\mathbf{H}^+ + 2 e^- \rightarrow \mathbf{As}$	$5O_3^{3-} + H_2O$	$pe^{o} = 2.64$
	pK _{a1}	pK _{a2}	pK _{a3}
H3AsO3	9.23	12.10	13.41
H ₃ AsO ₄	2.24	6.76	11.60

Workers at a water treatment plant want to ensure that > 99% of the total arsenic $[As]_T$ in the water is in the oxidized form prior to feeding it to an ion-exchange process. If the pH of the water is 7.6, what is the minimum p*e* required for the treatment process to work?

10. A pollutant enters a thermally stratified lake by two distinct pathways. A river delivers the pollutant into the epilimnion at a rate of 35 kg/yr, whereas groundwater seepage delivers the pollutant to the hypoliminion at 4 kg/yr. Because of sedimentation, the residence time of the pollutant in the lower layer is 1.5 yrs. The average concentration in the whole lake is 80 ng/L, the total volume is 10^9 m^3 and everything is at steady state.

- a) Draw a diagram of the system illustrating stocks and fluxes, where possible.
- b) What is the total amount of pollutant in the lake?
- c) Set up equations relating stocks, flows and residence times.
- d) Solve for the residence time of the pollutant in the epilimnion (upper layer)?