
More on Residence Times and Half-lives 
 
Residence times (τ) can be determined for the water in a particular reservoir (such as a lake) or for 
a substance within it (such as a contaminant in a lake). The residence time for water in a reservoir 
can be determined from the total amount (the stock - usually expressed as a mass or volume) of 
the reservoir and either the total rate of inflow (expressed in units of mass or volume per time) or 
outflow. Similarly, the residence time for any substance in a reservoir can be determined. Note: 
units of the numerator and denominator must be consistent in order to yield a dimension of time 
for the ratio. 
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If a pollutant is non-volatile, stable and highly water soluble it will have a residence time similar 
to that of the water itself assuming no water loss via evaporation (i.e., τp ~ τw).  However, if the 
water is lost from the reservoir via a pathway not available to the pollutant (such as evaporation), 
then τp > τw.  It is also possible that a pollutant has loss pathways not available to the water (such 
as degradation or sedimentation).  It this case, τp must be less than τw.  
 
 
The residence time of a substance within a reservoir may be governed not only by the residence 
time of the water in the reservoir itself (essentially a dilution or flushing factor), but also by a 
variety of physical, chemical and biological processes, which most often follow first order or 
pseudo-first order kinetics. Since the stock of a pollutant can also be expressed as a concentration 
([C]) and it’s rate of loss (dC/dt) can be written as the product of a rate constant (k) and 
concentration ([C]); 
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or if the pollutant can be lost by several first order processes, 
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where one of the rate constants is kw =1/τw is due simply to the residence time of the water in the 
reservoir.   
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For first order (or pseudo-first order) processes, the rates can be expressed as k [C], where k is the 
first order (or pseudo-first) order rate constants (units = time-1).  Recall that for a first order 
process, the rate (d[C]/dt) = - k [C]1 
 
Collecting like terms and integrating yields, 
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So at t = τ,   [C]t = [C]o e-1 
 
and the concentration has dropped to 1/eth of it’s original value. Hence, the residence time is 
actually the time required for the stock to drop to 1/e (1/2.718 = 0.368) of it’s original value if all 
inputs were to immediately cease.  So a non-volatile persistent contaminant, which does not 
otherwise breakdown, would be diluted to 37% of its original concentration in period of one 
residence time (assuming the contaminant is evenly distributed in a thoroughly mixed reservoir 
with negligible evaporation).  
 
The half-life (t1/2) is the amount of time required for the stock to drop by 50%.  Hence, to 
calculate the amount of material remaining after some time, one can use the integrated for of the 
rate equation (above) or apply the following relation; 
 

[C]t = [C]o(½)n 
 
where [C]t is the concentration after some time (t), [C]o is the initial concentration and n is the 
number of half-lives.  As you would expect, after one half-life the concentration will be [C]o (½)1 
or one half of its original value. After two half-lives, the concentration will be [C]o (½)2 or one 
quarter of its original value and so on. This works equally well for non-integer values of n. 
 
Although the residence time is easier to directly estimate with the knowledge of process rates or 
rate constants, the half-life is often easier to interpret.  
 
Since,   τ = 1/k  
where k is the first order rate constant,  
and   t1/2 = ln 2/k 
it can be shown that; 
   t1/2 = τ (ln 2) = 0.693 τ 
 
Hence, the half-life is roughly 70% of the lifetime.  
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Examples: 
 
1.  The residence time of Okanagan Lake is approximately 60 yrs.  How long would it 
take from the cessation of a discharge of a persistent contaminant to fall to 10% of its 
original concentration? 
 
 
 
 
 
 
 

[Ans: 140 yr] 
 
2.  If the concentration of a pollutant in Lake Superior were 1.0 ppm today, how many 
half lives would it take for its concentration to fall to 50 ppb ppm if all input of the 
pollutant into the lake ceased immediately? 
 
 
 
 
 
 
 

[Ans: 4.3] 
 
 
3.  A compound has a chemical degradation rate constant of 6.6 x 10-3 s-1 in a 2500 m3 
water treatment plant.  At what flow rate could the treatment plant be operated if a 10 
minute water contact time is required to remove this compound? 
 

[Ans: 1.8 x 106 m3 day-1] 
 
 
 
 
 
 
 
 
 
4.  A soluble pollutant is dumped into a lake starting on day zero.  The rate constant of 
the increase is 0.069 day-1.  The integrated rate equation is given by [C]t/[C]max= (1 – e-kt).  
Sketch a labeled plot of the relative concentration over the first 60 days.  What fraction of 
the steady state concentration is reached after 35 days? 
 

[Ans: 0.91] 
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Steady-State Box Models and Residence Times 
 
When the flow of a substance into a lake, the atmosphere, an animal, or any other “box” 
is equal to the outflow of that substance, then amount, or “stock”, of that substance in the 
box will be constant.  This is called a “steady state” or “equilibrium.”  The ratio of the 
stock in the box to the flow rate (in or out) is called the residence time (τ).  Thus, if the 
Fin is the rate of inflow to the box and Fout is the rate of outflow, the steady-state 
condition is Fin = Fout.  Letting M be the stock and τ be the residence time, then 
τ = M/Fin = M/Fout.  
 
 
A Polluted Lake Problem1 
 
A stable and highly soluble pollutant is dumped into a lake at the rate of 0.16 tonnes per 
day.  The lake volume is 4 x 107 m3 and the average water flow-through rate is 8 x 104 
m3/day.  Ignore evaporation from the lake surface and assume the pollutant in uniformly 
mixed in the lake.  What eventual steady-state concentration will the pollutant reach? 
 
Solution 
The rate at which pollution is added to the lake is given, so to calculate the steady-state 
stock, the residence time is needed.  Because the pollutant is uniformly mixed in the lake, 
the residence time of the pollutant will equal the residence time of the lake water, which 
can be derived from the lake data provided.  Dividing the stock of water, Mw by the rate 
of water flow-through Fw the residence time of water in the lake, τw is obtained: 
 

7 34x10 m
500days4 38x10 m / day

M w
w Fw

τ = = =  

 
Because the residence time of the pollutant, τp is equal to τw it follows that the steady-
state stock of pollutant, Mp is the pollution input rate, Fp times the residence time, or: 
 

0.16 tonnes/day x 500 days = 80 tonnesM Fp p pτ= =  

 
If we multiply the volume of a cubic meter of water by the density of water, we discover 
that a cubic meter of water by the density of water, we discover that a cubic meter of 
water weighs exactly one metric ton.  Thus, the steady-state concentration of the pollutant 
is 80 tonnes/ (4 x 107) tones, or 2 parts per million (2.0 x 10-6) by weight. 
 
Aqueous concentrations are often specified in units of molarity, or moles per liter.  
Suppose the pollutant has a molecular weight of 40 (that is, there are a total of 40 protons 
and neutrons in the atoms of each molecule).  Then the number of moles of pollutant is 
the weight in grams divided by 40, or 80 x 106/40 = 2.0 x 106 moles.  The number of 
liters of water in the lake is 4 x 1010, so the molar concentration of the pollutant is 50 x 
                                                           
1 Adapted from Consider a Spherical Cow: 
     A course in Environmental Problem Solving, John Harte, University Science Books, CA  1988 
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10-6 miles/liter.  This is often written as 50 micromoles/liter, since a micromole is 10-6 
moles.  The unit of the mole/liter is called a molar, and is sometimes designated by M.  
Thus the concentration can be expressed as 50 x 10-6 M or 50 μM. 
 
 
 
 
Now let us look at our two important assumptions.  First, suppose that evaporation cannot 
be ignored, so the total rate at which water exits the lake now has two components: 
evaporation (one third) and stream outflow (two thirds).  The total rate at which water 
exits the lake is unchanged; it equals the inflow rate of 8 x 104 m3/day.  Moreover, 
assume that the evaporating water is free of pollutant.2  Qualitatively, we would expect 
the steady-state concentration of pollutant to be higher now, because one possible exit 
pathway (with evaporating water) is closed off.  The residence time of the pollutant is 
now no longer equal to that of the water but rather is given by the residence time 
associated only with stream outflow of water.  This is given by 
 

'

7 34 x 10 m
= = 750 days4 35.3 x 10  m /day

.w outflowτ  

 
The rest if the calculation remains the same and the steady-state concentration of 
pollutant will be 3/2 greater, than before. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The other fundamental assumption made in the original problem was that the pollutant 
uniformly mixes in the lake water.  The effect of relaxing this assumption will depend on 
precisely how the pollutant is unevenly distributed within the lake and how water flows 
through the lake.  An important special case, for example, is that of a stratified lake, in 
which the upper, warmer layer (epilimnion) is relatively isolated from the lower, colder 
layer (hypolimnion).  Stratification is fairly common in late spring, summer, and early 
fall in deep lakes in regions with distinct warm and cold seasons.  A pollutant entering 
the epilimnion of a stratified lake will not mix readily with the hypolimnionic water.  
                                                           
2  A substance that leaves the water with the evaporating vapour is said to “codistill.” 
Some pollutants, like DDT, do codistill, but most do not. 
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Therefore, the effective dilution volume is the volume of the epilimnion rather than that of 
the whole lake, provided the residence time of the pollutant is short compared to the time 
constant characterizing the exchange of water between the two stratified layers. 
 EXERCISE 1:  Assume that there is no transfer of water between the two layers 
during six months of the year when the lake is stratified.  During the remaining six 
months, the lake is thoroughly and rapidly mixed.  Assume the epilimnion occupies one 
fifth of the volume of the lake and that all the inflowing water and the incoming pollutant 
enter the lake at the surface in such a manner that during stratification they mix only with 
the epilimnion.  Sketch, qualitatively, a graph of the concentration of pollutant as a 
function of time throughout the year at two depths: one midway down the epilimnion and 
one midway down the hypolimnion. 
 
 
 
 
 
 

EXERCISE 2: A pollutant enters a thermally stratified lake by two distinct 
pathways.  A river delivers the pollutant into the epilimnion at a rate of 35 kg/yr, whereas 
groundwater seepage delivers the pollutant to the hypoliminion at 4 kg/yr.  Because of 
sedimentation, the residence time of the pollutant in the lower layer is 1.5 yrs. The 
average concentration in the whole lake is 80 ng/L, the total lake volume is 109 m3 and 
everything is at steady state. 
a)  Draw a diagram of the system illustrating stocks and fluxes, where possible. 
b)  What is the total amount of pollutant in the lake? 
c)  Set up equations relating stocks, flows and residence times. 
d)  Solve for the residence time of the pollutant in the upper layer? 
 
 
 
 
 
 EXERCISE 3:  Two lakes are located on the same river, as shown in the Figure 
(below).  A is upstream of B.  Water flows into A at a rate SA; it evaporates from A at a 
rate EA and from B at a rate EB.  A tributary flows into the river between A and B at a rate 
SB.  Evaporation from the streams can be ignored.  A soluble pollutant flows into Lake A 
at a rate P.  There are no other sources of the pollutant, it is well mixed in both lakes, and 
it does not codistill.  The lakes have water volume VA and VB, respectively, and are in 
hydrological steady states. (a) What is the rate of stream flow out of Lake A?  Into Lake 
B?  (b) What is the residence time of water in Lake A?  In Lake B?  (c) In the steady 
state, what concentration of pollutant will be found in each lake if P is given in units of 
grams per second, the S’s and E’s are in unites of liters per second, and the V’s are in 
units of liters?  
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Non-Steady-State Box Models 
 
The previous problems were solved by equating compartment inflows to compartment 
outflows.  This was appropriate because the problems involved steady-state situations.  A 
more difficult class of problems involves stocks that change over time, a situation arising 
when inflows are not in balance with outflows.  When the inflow, Fin, is not equal to the 
outflow, Fout, then the rate of change of the stock is given by 

 
    rate of change of M  =  Fin  -  Fout          (1) 

 
If Fin > Fout, M increases with time; while if Fin < Fout, M decreases.  In either case, there is 
no longer a well-defined residence time.  
  
Eq. 1 is the starting point for many non-steady state box models. 
 
If the flows are known functions of the stock, then the equation can be solved for M(t).  
The problems in this section illustrate how this is done for the case in which the stocks 
vary smoothly, so that a differential equation can be written. 
 

   in out
dM

F F
dt

= −              (2) 

 
In a multi-box model, a set of equations like Eq. 1 results.  If the flow in or out of one 
box depends upon the stocks in that box and also the stocks in other boxes, then a set of 
interconnected, or coupled, equations results. 
 
 
Pollution Buildup in a Lake 
 
A lake has a volume of 106 m3 and a surface area 6 x 104 m2.  Water flows into the lake at 
an average rate of 0.005 m3/sec.  The amount of water that evaporates yearly from the 
lake is equivalent in volume to the lake’s top meter of water.  Initially, the lakewater is 
pristine, but at a certain time a soluble, non-codistilling pollutant is discharged into the 
lake at a steady rate of 40 tonnes/yr.  Derive a formula for the concentration of pollutant 
in the lake as a function of time since the pollutant discharge began. 
 
Solution 
A noncodistilling pollutant is a substance that does not evaporate away with evaporating 
water.  Therefore, evaporation of lakewater is not an exit pathway for the pollutant.  
However, if the lakewater flows out of the lake in an outlet stream or via underground 
seepage, that water outflow will remove pollutant.  So to begin, let’s calculate the stream 
and seepage outflow rate for the lakewater.  The lakewater is in a steady state, with stock, 
Mw, equal to 106 tonnes (H2O) (since 1 m3 of water has a mass of 1 tonne).  The water 
inflow rate, Fw, is 0.005 tonnes(H2O)/sec  =  1.6  x  105 tonnes(H2O)/yr and therefore the 
total water outflow rate must also equal  1.6  x  105 tonnes(H2O)/yr.  The evaporation 
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outflow rate is 1 m/yr times the area of the lake, or  0.6  x  105 tonnes(H2O)/yr, and hence 
the stream and seepage outflow rate is 105 tonnes(H2O)/yr. 
 
At any time, t, let Mp(t) equal the mass of pollutant in the lake in units of tonnes.  The 
concentration of pollutant at time t is Mp(t)/Mw in units of  
tonnes(pollutant)/tonne(water).  If the stream-plus-seepage outflow rate is multiplied by 
the concentration of pollutant outflow, Fp,out(t), is obtained: 
 

     5
, 10

p
p out

w

M
F

M
=                  (3) 

= 0.1 Mp 
in units of tonnes(pollutant)/yr. 
 
The rate at which pollutant flows into the lake, Fp,in, equals 40 tonnes(pollutant)/yr.  
Equating the rate of change of Mp to the net difference between inflow and outflow, 

     , ,
p

p in p out
dM

F F
dt

= −     (4) 

,40 0.1 pM= −  
 

with Mp in units of tonnes(pollutant) and time in units of years.  This equation is of the 
form, 

     dX
a bX

dt
= +          (5) 

and has a general solution3 

     .( ) btaX t cb e−
= +         (6) 

The constant, c, must be determined from a specified condition on X(t).  Thus if X(0) is a 
known amount, the relation 

     (0) ,
a

X c
b

−
= +          (7) 

which follows from Eq. 6, determines the unknown constant, c.   
 
In our case, a = 40, b = -0.1, and if  t  =  0 is the time the pollutant discharge began, then 
X(0) = 0.  Therefore, c = a/b.  In units of tonnes, the mass of pollutant in the lake is given 
by 

     0.140 40
( ) .

0.1 0.1
t

pM t e−= −         (8) 

 
 
 
 
 
 

                                                           
3  You can derive the general solution by rewriting Eq. 3 in the form dX/(a + bX) = dt and integrating both 
sides.  You can also verify that Eq.6 is correct by direct substitution into Eq. 5.   
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EXERCISE 1:  What amount and what concentration of pollutant will exist in the 
lake as t approaches infinity? 
 
 
 
 
 
 
 
 
 
 
 
 
 

EXERCISE 2:  Since the water in the lake is in steady state, its residence time τw, 
can be computed.  What is the value of that residence time?  As t approaches infinity, the 
pollutant approaches a steady state; therefore a residence time, τp, is derivable.  What is 
the value of that residence time?  Explain why τp is greater than τw, and interpret the 
difference τw

-1 - τp
-1. 

 
 
 
 
 
 
 
 
 
 
 
 

 EXERCISE 3:  Draw a plot of Eq. 6 to get a visual sense of how pollution builds 
up in a lake.  Include values of X(t) at 2-year intervals for a 20-year period starting at t = 
0. 
 
 


